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ABSTRACT

Accurate prediction of thermophysical properties is 
essential to design effective and efficient systems. 
Equations of state valid over a wide range of conditions are 
needed to predict various thermophysical properties 
accurately. The work presented here aims at developing such 
equations using complex regression and computer simulation 
techniques. The primary regression technique used for
equation of state development was the stepwise regression 
technique. Multiproperty fitting is used in conjunction with 
the stepwise regression method to develop a new equation of 
state. The equation of state is developed for a refrigerant 
R13 4a, which is an alternative refrigerant. Results and 
statistical comparisons indicate the new equation to be 
comparable with existing equations of state for R134a. Also 
the new equation has the advantage of fewer terms and 
Helmholtz free energy form, which makes it more convenient to 
derive properties like Cp/ Cv, sound velocity, etc.

Simulated annealing is another regression technique 
studied in detail here. It is used to develop vapor pressure 
equations for carbon dioxide, propane and R134a. The vapor
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pressure comparisons indicate the new equations to be quite 
comparable to the existing equations. Detailed graphs and 
statistical comparisons are presented for all the models 
developed in this study.
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1. INTRODUCTION

1.1 General Background

Chemical engineering is an applied science in that it 
utilizes conservation principles and other theoretical results 
to solve practical problems. Unfortunately, apart from 
conservation principles, there are few exact theoretical 
results available to the practicing engineer. For example, 
many exact results are known in transport phenomena involving 
laminar flow, but few are known for more common turbulent 
regimes. Similarly, in thermodynamics, many exact results are 
known for ideal gases but few are available for compressed 
gases or liquids. In order to perform accurate and innovative 
process design, it is therefore necessary to develop high 
accuracy empirical models for physical behavior. In the case 
of thermodynamics, this means equations of state and, for 
example, mixing rules.

The aim of this work is to explore the application of 
computer simulations to systematically develop highly accurate 
empirical equations of state which are valid over a broad 
range of thermodynamic conditions. In addition to the wide 
range equation of state work, vapor pressure equations have
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been developed for propane, carbon dioxide and R134a. The 
fluid primarily studied in this work is, in fact, refrigerant 
R134a (1,1,1,2-tetrafluoroethane). Refrigerant R134a has
generated a lot of interest among refrigeration engineers and 
thermodynamicists because of its minimal detrimental 
environmental impact. In particular, one of the most widely 
used refrigerants across the world today is R12 
(dichlorodifluoromethane). R12 is a chloro-fluorocarbon(CFC), 
a class of chemical compounds that has been implicated as a 
cause of depletion of the ozone layer and resulting global 
warming. In order to minimize the detrimental effects of 
refrigerants on the environment, a treaty known as the 
Montreal Protocol has been enacted. This treaty proposes a 
rigorous schedule for phasing out use of the CFCs all around 
the world. R134a has emerged as a leading substitute for R12, 
because its thermodynamic properties are similar to those of 
R12 and it has low acute and chronic toxicity and almost zero 
ozone depletion potential. As a direct consequence of this, 
R134a will be used as a working fluid in refrigeration systems 
such as home refrigerators and automobile air conditioners. 
For effective and efficient design of these refrigeration 
systems, accurate prediction of thermophysical properties of 
R134a is required. Because of this, there has been a great 
interest in measuring and predicting the thermophysical
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properties of R134a.

In this work, an innovative approach is used to develop 
an equation of state for R134a. A modified stepwise 
regression algorithm is being used in conjunction with 
constrained multiproperty fitting to develop an accurate 
equation of state. Studies were also performed using the 
simulated annealing method as a possible alternative to the 
stepwise regression method. In the remainder of this section, 
the theory and practical applications of the simulated 
annealing method, stepwise regression method and multiproperty 
fitting will be reviewed and discussed.

1.2 Regression Analysis

As the need for finding optimal solutions to complex 
engineering problems grows, so does the need to find more 
efficient techniques to accomplish that goal. To that end, 
computer simulation, optimization and regression techniques 
have become an integral part of present day engineering 
practice. Linear optimization problems (e.g., problems which 
have a linear dependence on model parameters) can be solved 
using linear regression techniques1,2 better known as the least 
squares algorithm. That is to say that the least squares
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algorithm3 provides an optimal solution to the linear 
optimization problem given the functional form and weighing 
scheme. The most common application of the least squares 
method in chemical engineering is that of finding the best 
possible solution to represent the given data using a known 
functional form. Using least squares in exceedingly complex, 
multivariate problems such as those of process optimization, 
equation of state modelling, design of electronic circuits 
etc., leads to different correlations based upon the assumed 
functional forms. Due to this, numerous functional forms would 
have to be examined to find the optimal representation. This 
introduces an effective non-linearity into the problem. 
Unfortunately, when the optimization problem is non-linear, 
least-squares-like approaches do not guarantee an optimal 
solution. That is to say that each step in a non-linear least 
squares optimization moves in the direction of a minimum of 
the objective function, but can be "trapped" in local minima.

In this work we have explored a solution to the multiple 
functional form problem using a less well known adaptation of 
linear regression known as the stepwise regression method. 
Stepwise regression is very efficient in solving multivariate 
optimization problems, but in its native form cannot move 
"uphill" in non-linear optimization process.
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The basic form of a linear regression equation is as 
follows :

Y = £ am fm(x) (1.1)
where y is the dependent variable, x is the set of independent 
variables, fm are the functional forms, and am are the 
coefficients of the functional forms. The goal of regression 
analysis is to determine these amcoefficients. By doing so, 
the aim is to arrive at an equation which best represents the 
data.

Regression analysis could be described in general 
terms by the following main points4 :

- Determine the most important contributory terms fm (x) from 
a general expression y = y (xj.

- Evaluate the coefficients for the selected terms.
- Examine the significance of each of the selected terms using 

statistical tools.
- Select the best equation based on the results of the 

statistical tests.

The stepwise regression method is a systematic application of 
the regression technique described above. Since it has linear
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regression at its core, a detailed explanation of the least 
squares method is presented before discussing the stepwise 
regression technique.

1.2.1 Linear Regression

Consider the following regression equation

where y is the dependent variable, fm(x) denotes a functional 
form, am is the coefficient of the m* term, x denotes the K 
independent variables and M is the number of terms in the 
equation. If there are N experimental data points, then the 
weighted sum of squares of deviations between eqn. (1.2) and 
experimental observations can be calculated as

where S is the weighted sum of squares, wn is the weight of 
the n* data point, yobs is the observed value of dependent 
variable, and ycqlc is the calculated value of the dependent 
variable from eqn. (1.2) . The weights are usually calculated 
from the variance of the dependent variable using the Gaussian 
error propagation formula :

(1.2)

(1.3)
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K,n = _ L  (1-4)
Or

where

<  = <  + £ L  ( - & -  " x j 2 (i.5)

aY is the error in the dependent variable and ox is the error 
in the independent variable.

Minimizing eqn (1.3) with respect to the set {am>, one 
finds M normal equations in M unknowns.

E l l  Wn f™' (5^-1 am) = YU,.! wn Vn.oba fnjn> C1 "6)

Rearranging equation (1.6) , we find,

E l l  ^  YZ-l Wn fnm> = Zl-l ^  fnm' C1 '7)

where m' ranges from 1 to M. This equation can be written in 
matrix notation as

[F] [A] = [y] (1.8)

[F] is a square matrix of order M where each element of the 
matrix F is given by
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[Y] is a column matrix whose elements are given by,

Yi = Wn Yn.obs (i=l,2..,M) (1.10)

and [A] is a column matrix of order M whose elements are the 
unknown coefficients a/s.

1.2.2 Constraints

Constraints are an integral part of any regression 
technique and are primarily added to obtain a better fit at or 
around a specific point. Consider an thermodynamic equation of 
state, where the most difficult region to fit is around the 
critical point. This problem can be rectified by adding 
constraints which force the equation to pass through the 
critical point, i.e., forcing the equation to have 
P=Pc(Pc/Tc) / ( d p / d p ) c = 0 ,  and (d2p/d2/o)c= 0  where c denotes the 
critical point.

If L is the number of constraints and M is the number of 
normal equations, constraints can be added either by 
eliminating L equations from the M normal equations or by 
using the method of Lagrangian undetermined multipliers
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proposed by McCarty and Hust5. Mathematically, the constraints 
are given by,

where is the value of the functional form evaluated at the 
constraint conditions and c, is the actual value of the 1th 
constraint. In the method of Lagrangian multipliers one forms 
an augmented weighted sum of squares given by

where Q is the augmented weighted sum of squares with 
constraints, S is given by eqn. (1.3) and X, is a Lagrange 
multiplier.

In order to minimize Q, the constraints have be satisfied 
exactly and hence the second term on the right hand side of 
equation (1.12) will be zero. Thus, when Q is a minimum S is 
also minimized. Performing the differentiation of Q with 
respect to the unknown coefficients am, and setting the 
derivative equal to zero, one finds

(I-1,2, ,L)

(1 .12)
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■J~“" + y^-1 ̂ i^im ~ ° (in-1 / 2   /AT) (1.13)

where from eqn. (1.3)

= 52.12 vn (Hi a-f„- y») f» (i.i4)
Substituting eqn. (1.13) and eqn. (1.14) into eqn. (1.12), one 
finds

H - l  2 "a ( H i  a * f ™ - y n) f - '  + H i  = ° ( 1 - 1 5 )

After expansion and simplification, the following 
equation is obtained,

Hi a-H.l wnf^  + Hi XlfJ-' = H.1 d'̂ )
m' = 1,2,......   M

The set of M+L equations defined by eqn. (1.16) and eqn. 
(1.11) can be solved simultaneously to get the coefficients am 
and Lagrange multipliers, X,. The sum of squares will be 
minimized when the constraints are satisfied exactly. As a 
result, the values of the Lagrange multipliers are not needed.
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1.2.3 STEPWISE REGRESSION

The conventional least squares algorithm6,7 is one in 
which the sum of squares between the experimental and the 
calculated value is minimized to find the best possible 
equation for a given set of functional forms. This minimum 
value is then used to find the coefficients of the terms in 
the equation. Stepwise regression is an application of the 
linear regression formalism presented in the previous section. 
In particular, it is used to address the question of which 
functional forms, fm(x) should be used to best represent a set 
of data. In the stepwise regression method4, a collection of 
terms known as the "bank of terms" is generated. This bank of 
terms consists of all the possible terms which could be a 
part of the equation. The stepwise regression method 
selects those terms from the bank of terms which are
statistically most significant.

The stepwise regression algorithm has the ability to add 
one term at a time to the equation. It also has the ability to 
exchange terms within the equation with those not in the
equation but in the data bank, with the ultimate goal of
reducing the sum of squares. This in turn leads to a
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reduction of intercorrelation between terms and results in a 
better equation.

In the stepwise regression method, the regression matrix 
[B] is generated,

[B] = [n [y]
[Y]r [S]

(1.17)

where [F] is the MXM matrix given in eqn. (1.9), [Y]T is the 
transpose of [Y] given in eqn. (1.10), [S] is a 1X1 matrix 
whose value is the weighted sum of squares for the residues of 
the dependent variable. Thus, [B] is a (M+l)X(M+l) matrix. 
Note that in the case of stepwise regression, M is the number 
of terms in the bank of terms.

The regression matrix is generated in the above manner in 
order to facilitate the efficient calculation of the sum of 
squares, i.e., the overall sum of squares can be directly 
obtained from the element bm+1 m+1. The elements of the matrix 
[Y] are used to generate the change in the sum of squares upon 
adding the m* term to the equation. Moreover, the 
coefficients of the terms in the equation can be directly 
calculated from the elements of the [Y] matrix.

A constrained stepwise regression matrix can be
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constructed from eqns. (1.16) and (1.17). Here a vector [C] of 
the order X can be constructed. The regression matrix upon 
adding the constraints becomes,

[B] =
[f] [C] [Y]
[c]r [o] [rc]
[Y]r [YCf\T [S]

(1.18)

where [B] is a square matrix of the order M+L+l, [O] is a 
null square matrix of the order equal to the number of 
constraints, [C] is LXM matrix whose elements are functional 
forms under the constraint, [YC] is a 1XL matrix whose 
elements are the actual values of the constraints. In the 
regression matrix in eqn (1.18), the M would be the total 
number of terms included in the bank of terms.

The matrix generated in eqn. (1.18) is a square and 
symmetric matrix and hence, the operations like addition, 
deletion and exchange of terms can be carried out only on one 
half of the matrix. This is unlike the stepwise 
regression methods proposed by de Reuck & Armstrong8, Draper 
& Smith9 and Efroymson10, where a unit square matrix of the 
same order as the regression matrix has to be generated. A 
column matrix [T] of the order of M+L is also generated to 
keep track of the terms being added and deleted from the
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equation. If the term is present in the equation, the 
corresponding value in the matrix [T] is 1, whereas if the 
term is not present in the equation, its value is 0.

The stepwise regression method can be explained in the 
following steps.

• Initial Selection of Terms
The search in the stepwise regression algorithm is 

usually started with a small set of preselected terms. These 
are the terms which are most likely to be present in the 
equation. If such terms are not known, the search could also 
be started using a randomly selected set of terms. Once the 
initial terms are selected and their regression matrix is 
initialized, a search is initiated for another term which will 
provide the greatest reduction in the overall sum of squares. 
This is found by calculating the quantities for each term 
in the bank of terms.

f f i  ■ ( 1 . 1 9 )

where q- is the change in the sum of squares for the regression 
if the i* term were added to the equation and NMAX=M+L+1.
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• Addition of Terms
The term which reduces the standard deviation by the 

greatest amount as determined from eqn. (1.19) is then added 
to the equation using the algorithm for adding a term. This 
algorithm is shown in Table 1.1.

• Statistical Tests
After a term has been added, comprehensive statistical 

tests are performed to test the significance of the term and 
Othe equation as a whole. These include the Student-t11 test 
to examine the significance of each term and the Fisher F11 
test to examine the significance of the equation as a whole. 
As these tests are an integral part of the stepwise regression 
method, a brief discussion of the tests is included here for 
completeness.

For any equation, it is important to examine the 
significance of each term in the equation while executing the 
stepwise regression algorithm. In this context, a
statistically significant coefficient is one which differs 
from zero with a statistical probability S of at least 99.99% 
and hence cannot be omitted from the equation. The student- 
t distribution is used to test the significance of a term
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Table 1.1 Transformation of the regression matrix upon
addition of the kth term.

Transformation Condition

bij = 1/b!± i=j=k

bij = bij/bkk i=k, j<k or j=k, i>k

br bn + (-i)1*™ tfjh* i=j >k

br bn + t>V-b« i=j<k

bU = bn - biPjk/bU. i>k,j>k, iitj

bu = bij - AA'/È« i>k,j<k,i^j

bij = bij - bkPi)/ba i<k, j<k, i?±j

1 i i i NMAX, 1 < j < NMAX, i h j

already present in the equation. It is initially assumed that 
all the coefficients of the terms present in the equation are 
zero. Let a; be the coefficient of the i* term. The null 
hypothesis would be that a— O. According to definition, if the 
statistical probability of the test applied to the null 
hypothesis is greater than a specified value, then the 
hypothesis is rejected, otherwise, it is accepted.
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For the coefficient aif the Student-t statistic is given by.

The standard deviation, oif of each coefficient a, already in 
the equation is given by

ani = [i>LL bu /(N-Ma) ] 2 (1-21)

where Ma is the number of terms already present in the 
equation and N is the number of data points.

The statistical probability that the coefficient a; differs 
from zero can be obtained from the probability of the Student- 
t distribution,

Si = ( — ) [ r(-ü-îi)/ r(v/2)] f '1 (l + JËf)-('"D/2dC(1.22)
Vttv  ̂ v

where v is degrees of freedom and is equal to the difference 
between the number of data points and number of terms in the 
equation and the t/s are obtained from eqn. (1.20)

If the value of S; is greater than a user specified 
value (around 99.99%) , then the value of the coefficient being 
tested is significantly different from zero and hence the zero 
hypothesis is rejected. The terms for which the zero 
hypothesis is rejected are retained in the equation. On the
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other hand, if the probability of any of the terms in the 
equation were less than the user specified value, then that 
term would be eliminated from the equation using the deletion 
procedure described below. The whole purpose of this test is 
to minimize the intercorrelation between terms. 
Intercorrelation between terms means that different 
variables/terms exhibit the same behavior in regard to the 
regression of the quantity to be determined. So, in this 
case, if a term loses its significance, it is eliminated and 
thus reducing the probability of intercorrelation.

• Deletion
The terms which have already been added to the equation 

can also be deleted from the equation, if they do not satisfy 
the rigorous statistical tests outlined above. The 
deletion process can be summarized in the steps shown in Table 
1.2.

• Fisher F : A Test of significance for the equation
Once all the individually insignificant terms have been 

deleted, the equation is statistically tested as a whole. 
This kind of testing is performed using the Fisher-F test. 
The Fisher-F test compares variances of different equations 
for „the. same population.
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Table 1.2 Transformation of the regression matrix upon 
deletion of the k* term.

Transformation Condition

bt = i/btk i=j=k

bij = bij/bu i=k, j<k or j=k, i>k

bf=bt + (-l)2+™  tfjba i=j >k

bij—bjj + (~l)2*m  b2u/btt i=j<k

bij = bv + bj3jt/ba i>k,j>k/i^j

bij = Ay + AA'/Aut i>k,j<k, i?±j

Ay = A  + ti/A'/At i<k,j<k,i^j

1 i i i NMAX, 1 < j < NMAX, i > j

Let Vj be the variance of the first equation and V2 be the 
variance of a second equation. The second equation is 
obtained by eliminating the term with the smallest t value. 
The zero hypothesis here would be that these variances are not 
significantly different. In other words, if the probability 
of the T-statistic is greater than a certain user specified 
value, then the null hypothesis is rejected, otherwise, it is
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accepted. The variance can be calculated from the matrix [B] 
by

V, = bLL/(N-Ma) (1.23)
and V2 is calculated by

where Na is the number of terms in the equation.

The statistical probability of the Fisher F distribution 
can be calculated using the following equation.

where vt = Degrees of freedom of actual equation, v2 = Degrees 
of freedom of equation with eliminated term and F = V1/V2.

If the probability S is greater than a user defined value 
(around 99.99%) then, the variances for the two equations 
differ significantly and the null hypothesis should be 
rejected. This means that deleting the term with the lowest 
Student-t values deteriorates the equation and that term 
should not be deleted. If the probability S is less than the

(1.24)

5  = [ r ( 2 L Ç i /  r < ^ )  n - ^ ) ]  ( v 2) v*/2 v v/2

(1.25)
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user specified value then, both equations are quite comparable 
the null hypothesis should be accepted. This means that 
deleting the term with the lowest Student-t value does not 
affect the equation.

The primary goal of this test is to get rid of small 
intercorrelations between the terms. Sometimes, the Student-t 
test is not able to detect small intercorrelations between 
terms and hence the analysis of variance method is used to 
detect it and try to eliminate it. The reduction of 
intercorrelation between contributory terms achieved by this 
test is essential in finding optimal solutions.

• Exchange of Terms
Terms are added and deleted using the procedures 

described above until no term can be found that reduces the 
sum of squares. At this point an attempt is made to exchange 
terms. Here, each term in the equation, except the last one 
added is exchanged with all the remaining terms in the bank of 
terms. The effects of exchanging terms can be directly 
observed by looking at the standard deviation which can be 
calculated from the Table 1.3.

It is thus not necessary to transform the whole matrix
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[B]. If a particular exchange leads to a minimization in the 
sum of squares, then the actual exchange is carried out. In 
the exchange, the term in the equation is first deleted using 
the method for deleting, and the term outside the equation is 
then added using the algorithm for adding a term. Statistical 
tests are again performed on the terms and the equation. The 
exchange of terms is a new feature added to the stepwise 
regression method by Wagner4. The whole stepwise regression

Table 1.3 Calculation of the Sum of Squares of an Equation in 
which term n already in the Equation is exchanged

for term m

Condition

m > n m < n

“ ^Lm L̂n̂ nm/̂ nn bLm bLnbmn/bnn

dm = k>inm + b^/bm dm = bnun + n̂in/bnn

AA = bL + b̂ Ln/bnn

SS = AA - c2m/dm
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method can be summarized the flowsheet shown in Figure 1.1. An 
example which better illustrates the stepwise regression 
algorithm is given in Appendix 1.

1.2.4 Applications

The stepwise regression method has found numerous 
applications in engineering and science. Wagner4 first 
applied this method for development of a vapor pressure 
equation for nitrogen and water. de Reuck & Armstrong8 used 
this method to develop an equation of state for propylene. 
Wagner14 also used the stepwise regression method in 
conjunction with mutation12,13 to generate an extremely accurate 
equation of state for water. Jacobsen and co-workers15 have 
also applied the stepwise regression methodology to the 
development of equations of state for air, R22, and R12.

In this work, the stepwise regression method is being 
applied to development of an equation of state for refrigerant 
R13 4a. In order to develop a good equation of state, it has to 
accurately predict all thermophysical properties such as PVT,
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1.1a Flowsheet for the stepwise regression method
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Fig 1.1c Flowsheet for the stepwise regression method.
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sound velocity, Cp, Cv, second virial data and the saturation 
boundary. This involves fitting the equation to different 
kinds of data and is known as multiproperty regression. 
Multiproperty regression is used in conjunction with the 
stepwise regression method to develop a new equation of state, 
which predicts different properties accurately. The next 
section contains a detailed discussion of multiproperty 
regression technique.

1.3 MULTIPROPERTY REGRESSION

In modern engineering and science, the need for finding 
accurate equations over a wide range of conditions is growing 
rapidly. Very frequently, these equations are used for 
deriving other properties that are obtained through 
differentiations or integrations of the underlying equation. 
It is therefore imperative that an equation represent the 
derived data accurately. Multiproperty regression17 is a 
direct consequence of this need. Although multiproperty 
regression can be used in any linear or non-linear regression 
technique, more often than not, the method is used with the 
linear least squares16.

Consider the example of a thermodynamic equation of state
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from which a large number of properties can derived. These 
include isochoric heat capacity, isobaric heat capacity, 
second virial coefficient, enthalpy, etc. Ideally, an 
equation of state should be accurate not only in PVT surface 
representation, but also in the representation of these 
derived properties. Conventionally, equations of state have 
been fitted only to one kind of data, namely PVT data. As a 
result, these equations have frequently been inaccurate in 
representing the derived properties. At present, focus is 
shifting more towards equations which fit second virial, 
sound velocity, etc. data simultaneously and thereby 
developing very accurate equations of state.

1.3.1 Theory

Let there be j =1,2,....,J different kinds of data sets 
which are incorporated in the least squares method. For each 
of these J different data sets, the following set of linear 
equations can be constructed.

[Pj][a] = [Yj]
[F2j[a] = [Y2]
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We wish to minimize the weighted sum of squares for all 
data types in the fitting process. Adding all the above 
equations, one finds
[[F1]] + [F2] + ........... + [Fj] ] [a] = [Y1] + [Y2] + ---- + [Yj] (1.26)

This equation can be further written as

[F][a] = [Y] (1.27)
In multiproperty fitting, the constraints can again be added 
by the method of Lagrange multipliers.

1.3.2 Linearization of Non-Linear Functions

A number of times in thermodynamics, we encounter 
properties which have nonlinear dependence on the equation of 
state parameters. In order to use these properties in a 
linear regression method like the stepwise regression, the 
non-linear terms must be linearized in some way. One method 
of linearizing non-linear thermodynamic properties dependence 
is to calculate non-linear part of the term using an existing 
equation of state and thus eliminating the need for finding 
the value of the non-linear parameter. A good example is the 
incorporation of the sound velocity in a linear regression
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calculation. The sound velocity is defined as

(1.28)

The sound velocity can be used in a linear regression by 
generating the (dP/dp) data which has linear dependence on the 
equation of state parameters and by independently calculating 
the non-linear ratio Cp/Cv from a previous fit. Since Cp/Cv is 
relatively slowly varying property, this process (e.g., 
getting a better EOS and regenerating dP/dp converges rapidly. 
In this way, stepwise regression method could be applied to 
non-linear forms after some manipulations.

1.3.3 Weighing

Multiproperty fitting is extremely sensitive to 
weighing, thus the weighing scheme incorporated plays a very 
important role in finding an optimal solution to the problem. 
In multiproperty fitting, complications arise from the fact 
that there are two kinds of weights which have to be 
considered:

1. Weight for each individual data point of a given type.
2. Weight for type of data.



Finding the right balance between these weights is 
essential to obtaining a good result. There is no accepted 
prescription for finding the correct balance of weights for a 
given data set. Because of this, literally hundreds of 
weighing schemes are tried in conjunction with the regression 
process.

The multiproperty regression technique has found numerous 
applications in thermodynaics. Huber and Ely18 used this 
method develop a new equation of state for R134a. Huber and 
McLinden19 used this method to develop a new equation of state 
for R134a in pressure explicit form.

1.4 Simulated Annealing

One problem with the stepwise regression approach is that 
it can find local minima in the function space spanning the 
bank of terms. Other optimization methods can in principle 
overcome this difficulty. A primary method in this category 
is known as simulated annealing optimization.

Simulated annealing is a general method for treating a 
broad class of complex, multivariate optimization problems. 
It has found wide applications in physical sciences and
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engineering, but has been sparingly used in conjunction with 
multiproperty regression in thermodynamics. The simulated 
annealing algorithm was first proposed by Kirkpatrick et al. 
(1 98 3)^, who drew an analogy between the annealing process 
which attempts to minimize the energy state of a pure solid 
and the mathematical optimization of a complex system. 
Simulated annealing has been applied by Dolan et al.25 to find 
optimal and near optimal solutions to process network design 
problems that have combinatorially large number of feasible 
designs. It has been successfully used for heat exchanger 
network" design by Dolan et al26. This method has also found 
numerous other applications from genetics27 to design of 
complicated electronic circuits.

In this work, simulated annealing algorithm is used to 
generate vapor pressure equations for pure fluids. Simulated 
annealing is becoming increasingly popular for solving complex 
multivariable optimization problems. The mathematical theory 
of Markov chains (Hammersley & Handscomb)24 suggests that, in 
the optimization context, simulated annealing is capable of 
producing the global minimum independent of the initial guess. 
Several proofs have been proposed, which establish that if the 
number of moves is infinite at each temperature, simulated 
annealing produces a globally optimum solution. In practice,
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however, one cannot guarantee that the solution obtained by 
simulated annealing in a finite amount of time is the rigorous 
optimum, but formal results indicate that a sufficiently slow 
annealing schedule will provide an optimal or a nearly optimal 
solution which is independent of the initial guess.

Consider a system that has the set {Slz S2, S3 ,SN> of
possible states. If Xt is the state of the system at time t, 
the system is a Markov chain if the probability of observing 
Xt is independent of all previous states except for its 
immediate predecessor X ^ . Mathematically,

I ^ ....... I (1.29)

where P denotes the probability of observation. The above 
equation indicates that for a Markov chain, the probability 
that the system is in state Sj given that other system states 
at different time intervals were 2^,2^, etc., is equal to the 
probability that a system is in state 2j at time t given that 
system was in state 2 ^  at time t-1. A simpler explanation is 
that the system is independent of all other states except the 
previous state.

2imulated annealing generates a Markov chain of points of
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the objective function which depends only on the previous 
state of the system. For example, the chain of points could 
be a series of equations for a regression problem. It accepts 
and rejects randomly generated "moves" on the basis of a 
probability related to an annealing temperature. It can 
accept moves which change the value of the objective 
function in the direction of the desired optimum, as well as 
moves which change the value of the objective function in the 
opposite direction. Thus, for a global minimization problem, 
a move that increases the value of the objective function (an 
uphill move) may be accepted as a part of the full series of 
moves for which the general trend is to reduce the value of 
the objective function. In this way, simulated annealing is 
able to explore the full solution space and find solutions 
which are independent of the starting point. This means that 
probability of getting trapped in a local minima is much lower 
as compared to other optimization techniques.

Simulated annealing has proven to be a practical method 
for solving combinatorial ly large optimization problems. This 
method was first applied successfully to the problem of the N- 
city travelling salesman by Kirkpatrick20. Several other 
applications of simulated annealing have also been explored. 
The next section deals with the theory behind simulated
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annealing and its underlying metropolis algorithm.

1.4.1 Monte Carlo simulations

Simulated annealing is based on Monte Carlo23 simulation 
techniques developed by Metropolis et al. (1953)22 to study the 
statistical mechanics of condensed systems. Statistical 
mechanics as applied to condensed systems is a method for 
obtaining aggregate properties arising from large number of 
atoms found in condensed matter. Because of the high density 
of molecules, only the most probable behavior of the system in 
thermal equilibrium at a given temperature can be observed. 
A fundamental question in statistical mechanics concerns what 
happens to the system in the limit of low temperature. Ground 
states and configurations close to them in energy are 
extremely rare among all the configurations of a macroscopic 
body, yet they dominate its properties at low temperatures 
because as T is lowered, the Boltzmann distribution 
collapses into the lowest energy state or states. Finding the 
low temperature state of a system when a method for 
calculation of its energy is given is an optimization problem 
not unlike those encountered in combinatorial optimization. 
Iterative improvement applied to such problems is much like 
microscopic rearrangement processes modeled by statistical
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mechanics, with the cost function playing the role of energy.

In Monte Carlo simulations of condensed systems, the 
configurational energy E, which the system possesses by the 
virtue of molecule positions and which is determined from the 
intermolecular potentials, is calculated. E is given
completely by a set of {rj, i = 1,....,N, where r̂  denotes the 
position of the molecule i in the system. Also, one can
define the configurational energy of a system of N molecules 
by the 3N dimensional vector.

rN = {ru r2,......,rN) (1.30)
The energy E is a function of PN, viz.,

E = E(rN ) (1.31)
The objective of the Metropolis algorithm is to generate 

a series of points in configuration space F^, which are 
distributed according to the canonical ensemble probability 
density

P{TN) « eyL-p{-E{rN) /kbT) (1.32)

where kb is the Boltzmann Constant.

The Metropolis algorithm is a rigorously correct
formalism for generating a Markov chain21 of points in 
configuration space that are asymtotically distributed
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according to (1.32) and are independent of the initial point. 
The basics of the Metropolis algorithm are as follows:
1. Initialize the position of the molecules.
2. Randomly choose a molecule and move it at random to a 

position.
3. Calculate AE = E(FN’New) - E(rN’old) . If AE < 0, then accept 

the configuration. Otherwise accept it with a probability 
of exp (-AE/kbT ) .

4. Iterate over steps 2 and 3.
The theory behind the Metropolis algorithm is beyond the 

scope of this work, but a more detailed explanation of the 
algorithm can be found in Hammersley & Handscomb24. The 
following inferences can be drawn about the Metropolis 
algorithm.
- The algorithm has the capability of climbing out of a local 

minima in the energy function since uphill moves are 
permissible.
The proportion of uphill moves accepted increases with 
temperature.

An example of the simulated annealing process is shown in Fig 
1.2.
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Fig 1.2 Cost as a function of iteration number 
(Reproduced from Ellen et al.28)
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1.4.2 Theory of Simulated Annealing Optimization

The process of identifying a set of variables x =
( x,, x2 ........ xN) which globally minimize an objective
function C(x) is referred to as multivariable optimization. 
Kirpartrick20 proposed that multivariable optimization problems 
involving a large number of variables might be solved 
efficiently using a generalization of the canonical ensemble 
Monte Carlo algorithm. The "cost" function or the objective 
function C(x) in multivariable optimization is assumed to be 
the equivalent of energy in a physical system. Similarly, an 
analogy can be drawn between the configuration point {TN} and 
the vector x. Since as explained before, if a physical system 
is annealed to an extremely low temperature, it will 
eventually find itself in the lowest energy configuration, 
Kirkpatrick & co-workers20 suggested that by performing a 
similar "annealing" procedure on multivariable optimization 
problem, the vector {x} which globally optimized the objective 
function could be located.

The application of this kind of procedure necessitates 
finding an analog of a physical system's temperature in the 
multivariable optimization problem. Kirkpatrick introduced 
the concept of simulated annealing temperature Tsa, which has
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the units of the objective function and is used to control the 
probability for accepting uphill moves in the optimization 
process. The simulated annealing temperature is initially set 
to a high value so that the probability of accepting changes 
in the vector {x> is also high. The value of Tsa is 
progressively reduced according to an annealing schedule. As 
the value of Tsa reduces, the proportion of accepted uphill 
moves goes down until no more moves are accepted. This 
indicates that all attempted moves are uphill in cost and that 
the temperature is low enough that these moves are no longer 
accepted. In order to find the global minimum for this 
optimization, the annealing has to be done in extremely small 
steps. The simulated annealing algorithm of Kirkpatrick is 
given as follows :
1. Initialize x and Tsa.
2. Choose an element of x at random and change it to a new 

value.
3. Examine AC = C (xnew) - C(xold) . If AC < 0 then accept

the change. Otherwise accept it with a probability of
exp (-AC/Tsa) , i.e. if AC > 0.

4. Repeat steps (2) & (3) while reducing Tsa according to the
annealing schedule.

T 6.+1) = t T <«> (1.33)
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£ = Annealing Schedule Parameter and £ > 0 and 
slightly less than 1.

This algorithm is analogous to the Metropolis algorithm for 
Monte Carlo simulation.
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2. APPLICATION OF SIMULATED ANNEALING METHOD TO DEVELOPMENT
OF VAPOR PRESSURE EQUATIONS

In this work, an attempt has been made to examine the 
feasibility of simulated annealing as a method for developing 
accurate vapor pressure equations. The ultimate goal was to 
apply the simulated annealing algorithm to developing 
equations of state for pure fluids. This chapter deals with 
the application of the simulated annealing method to develop 
vapor pressure equations for carbon dioxide, propane and 
refrigerant R134a.

As discussed in the Introduction, both stepwise 
regression and simulated annealing require that a bank of 
terms be constructed first. This bank of terms contains all 
the possible terms which could be a part of the equation. In 
this case, since the pressure is a function of temperature 
only, the terms in the bank of terms are actually different 
exponents of the temperature. For the development of vapor 
pressure equations, the number of terms in the bank of terms 
was 16. The choice of these terms is very important as terms 
with a small probability of being in the equation add to the 
computing time. Usually this set of terms is selected from



T-4456 43

previous vapor pressure equations. For this study, the
following form of the vapor pressure equation was used :

where Pc is critical pressure, r=l-T/Tc, Tc is the critical 
temperature, and P is the vapor pressure. The terms contained 
in the bank of terms are shown in Table 2.1.

Vapor pressure equations were initially generated from 
random combinations of the set of terms given in Table 2.1. 
The sum of squares of these resultant equations was then 
subjected to simulated annealing in order to obtain the best 
possible vapor pressure equation. The algorithm for vapor 
pressure used in this case is shown in Fig. 2.1. The 
maximum number of terms which could be a part of the equation 
can be specified by the user. Random numbers associated 
with every term are then generated. If the value of the 
random number for the term is greater than some user specified 
value, then that term is accepted. These terms are accepted 
until the total number of terms in the equation is equal to 
the value specified maximum value. The selected terms are

( 1  -  t )

(2 .1)
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Table 2.1 Terms in the Bank of Terms for the Vapor
Pressure Equation.

1 T

2 T1,9

3 t6.5

4 t2.5

5 T 1'5

6 r7.5

7 T3

8 T4

9 -̂5.5

10 T7

11 t8.5

12 T6

13 t3.5

14 T8

15 (1-T)2

16 T"1
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FIG 2.1 Flowsheet for the simulated annealing method algorithm.
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then subjected to a linear least squares fit from which the 
overall sum of squares can be determined. The calculated sum 
of squares is compared with the previous sum of squares and if 
there is a reduction in sum of squares then the change is 
accepted, otherwise, the Metropolis algorithm is applied. 
This whole process continues until the total number of 
iterations is equal to some value NMAX.

The simulated annealing algorithm was applied to develop 
vapor pressure equations for carbon dioxide, propane and 
R134a. The number terms in the equations was limited to six, 
but in principle more terms could be added to the equation. 
Experimental vapor pressure data were collected and a Gaussian 
weighing scheme was used. The errors in the measurements for 
temperature (aT) and pressure (ctp) were assumed to be as 
follows :

oT = 1CT3 T; 
ctp = 3 • lO"4 P;

where T; and P; are experimental temperature and pressure 
respectively.

Using the above errors, the weights were generated for 
each data point. The weight WTj for each point is given by.
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WTi 1
y Or + Op

(2.3)

These weights were then used along with the data points to 
generate the vapor pressure equations. In the next section, 
equations for carbon dioxide, propane and R134a are presented. 
The computer program for simulated annealing is given in 
Appendix II.

2.1 Carbon Dioxide

The C02 vapor pressure equation was generated using the 
data sets shown in Table 2.2. Upon using the above data, the 
following equation was generated by the simulated annealing 
algorithm for C02. The resulting coefficients are given in 
Table 2.3.

where f ( t ) =  ( 1 - T )  ln(P/Pc) , t=1-T/Tc, Te=304.25 K and Pc=73.7642 
bar.

f  ( t )  =  G 1t  +  G2x 1,5 + G3t4 +  <54 t 7 +  G 5T 3 ' 5 +  G6 ( I - t ) 2 (2.4)
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Table 2.2 Data Sets Used for Vapor Pressure Comparisons for
Carbon Dioxide

No DATA SET RANGE K Points

1. Meyers and Van Dusen29 216 - 304 67

2 . Schmidt and Thomas 30 293 - 303 8

3 . Cook31 295 - 303 5

4 . Michels32 217 - 276 19

5. Jenkin and Pye33 222 - 276 22

6. Cook34 293 - 304 15

7. Levelt-Sengers and Chen35 267 - 304 38

8. Michels,Blaise and Michels36 276 - 304 8

9 . Vukalovich37 238 - 298 12

10. Kirillin38 283 - 303 3

11. Amagat39 272 - 305 42

12 . Holste40 250 - 303 12

13 . Fernandez-Fassnacht et al.41 216 - 243 21
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Table 2.3 Coefficients for C02 Vapor Pressure Equation

No Coefficient

G i -7.0317262402

g2 1.5759670861

G 3 7. 7267263208 1001

G 4 -3 .3119067390 1002

G 5 -4 . 5769933009 1001

G 6 2.4789223571 10'03

The equation thus developed was then compared with the 
equations developed by Ely et al.42 The comparisons are shown 
in Figure 2.2. This graph demonstrates that the equation 
obtained with simulated annealing is in good agreement with 
the data and other equations for C02. The statistical 
comparisons for both equations are shown in Table 2.4. For 
the statistical test, AAD is the absolute average deviation, 
RMS is the root mean square of the deviations and BIAS is the 
average deviation.
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FIG 2.2 Comparison of experimental vapor pressures with 
calculated values for C02.
( O )  Meyers and Van Dusen; (D) Michels; (A) Jenkin and Pye ; ( + ) 
Levenlt-Sengers and Chem; (★) Michels, Blaise and Michels;
(ir ) Vukalovich; (•) Amagat; (■) Holste; (▲) Fernandez- Fassnacht.
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Table 2.4 Statistical comparisons for carbon dioxide for all
data.

Equation AAD, % BIAS,% RMS, %

Ely et al. 0.097 8.554 10"3 0.222

THIS WORK 0.11 -2.136 10-4 0.207

2.2 Propane

The data used for developing a vapor pressure equation 
for propane are summarized in Table 2.5. The vapor pressure 
curve for propane is very different from that of C02 in that 
it is very long, i.e., from a triple point of 85.47 K to a 
critical point of 3 69.85 K. For comparison, carbon dioxide's 
liquid-vapor region ranges form 274-304 K.

The equation developed for propane using simulated 
annealing is,

f(t) = Ĝ -z + G2z2'5 + (?3 t 1 ‘5 + G4t7-5 + G5t7 + C?6t8-5 (2.5)

where f(r) related to the vapor pressure given by eqn. (2.1) 
and t  = 1 - T/Tc, Tc=3 69.85 K and Pc = 4.24746 MPa.
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Table 2.5 Data Sets Used for Vapor Pressure Comparisons for
Propane

No DATA SET RANGE K Points

1. Tickner and Flossing43 105.35-164.75 13

2 . Carruth and Kobayashi44 94.54-178.65 12

3 . Maass and Wright45 229.75-250.05 6
4 . Dana et al.46 210.33-323.49 22
5. Sage, Schaafsma and Lacey47 293.93-368.76 20
6. Beattie et al.48 323.15-348.15 2
7 . Kemp and Egan49 166.19-231.46 12
8 . Deschner and Brown50 301.95-368.97 28
9. Reamer, Sage and Lacey51 313.48-368.72 8

10. Cherney, Marchman and York52 303.15-323.15 2

11. Clegg and Rowlinson53 323.15-368.15 8

12 . Helgeson and Sage54 277.59-360.93 16
13 . Gilliland and Scheeline55 314.81-357.59 3
14 . Burrell and Robertson56 148.95-229.05 16
15. Thomas and Harrison57 258.15-369.75 24
16. Mousa58 334.78-369.74 11
17. Kratze59 311.97-367.58 13
18. Teichmann60 324.75-363.42 15
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The coefficients for the equation are shown in the Table 2.6.

The comparisons for the vapor pressure equation with the 
equation developed by Goodwin61 are shown in Figure 2.3. The 
statistical comparisons for both the equations for propane are 
shown in Table 2.7 and 2.8.

Table 2.6 Coefficients of the Vapor Pressure Equation for
Propane

No Coefficients

Gi - 6 . 7 9 6 7 6 2 7 9 5 5

g2 - 1 . 8 4 3 8 8 9 4 7 5 7

g3 1 . 6 7 3 7 4 1 5 6 0 5

g4 4 . 6 5 2 4 8 9 5 8 3 3  1 0 01

g5 - 3  . 3 9 4 8 9 6 3 9 8 8  1 0 01

g6 - 1 . 4 6 5 2 2 4 7 0 2 4  1 0 01
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FIG 2. 3a Comparison of experimental vapor pressures with 
calculated values for Propane.
( O )  Thermal Loops; (□) Kemp; (A) Thomas ; (+) Kratze.
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FIG 2.3b Comparison of experimental vapor pressures with 
calculated values for Propane.
(A)Maass;(+)Dana;(★) Sage;(§)Deschner; (•)Reamer; (■) Cherney; 
(a ) Clegg; (□) Helgeson.
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Fig 2.3c Comparison of experimental vapor pressures with 
calculated values for propane.
(O)Gilliland;(□) Burrell;(A)Teichmann;(+)Tickner;(★)Carruth.
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Table 2.7 Statistical comparisons for propane for all data.

Equation AAD, % BIAS,% RMS, %

Goodwin 1.898 1.284 4 . 889

Sim Anneal 1.887 1.273 4 . 889

Table 2.8 Statistical comparisons for propane for fitted
data.

Equation AAD, % BIAS,% RMS, %

Goodwin 5.5855 10-2 2.879 10'3 <7Oi—1inCOCO

Sim Anneal 3.775 10'2 -2.044 10'3 4.912 IQ"2

2.3 R134a

The data sets used for fitting R134a (tetrafluoroethane) 
are shown in Table 2.9. The following equation was then 
generated using the above data sets shown in Table 2.9. The 
coefficients for the terms are given in the Table 2.10.
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Table 2.9 Data Sets Used for Vapor Pressure Comparisons for
R134a.

No DATA SET RANGE K Points

1. Goodwin and Weber62 214 - 373 79

2 . Arita et al.63 273 - 323 3

3 . Zhu, and Wu 64 279 - 363 43

4 . Baehr and Tillner-Roth65 303 - 374 37

5. Weber66 313 - 373 22

6. Wilson & and Basu67 210 - 369 32

7. Piao et al ,68 308 - 374 51

8 . Kubota, et al.69 253 - 373 25

9. Nishiumi H and Yokoyama70 247 - 373 16

10. Magee and Howley71 180 - 350 19

11. Morrison and Ward72 268 - 374 12

12 . Niesen73 312 - 371 13

13 . Maezawa74 279 - 350 14

14 . Baroncini75 243 - 258 61

15. Fukushima76 262 - 372 41
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Table 2.10 Coefficients of the Vapor Pressure Eqn. for R134a

No Coefficients

Gi -7.6559241549

g2 -8 . 0208389582 10"01

g3 1.9507847451

g4 -2.8803710775

g5 -1.9400505510

g6 1. 5870481334 10"03

fix) = G1t + a,!1-9 + G^T1,5 + G4x3 + G5x5 + G6 (1-t) 2 (2.6)

where f(r) is given by eqn. (2.1), r = 1 - T/Tc, Tc= 374.265 
K, and Pc= 40.603 bars.

The above equation developed using the simulated 
annealing algorithm was then compared with another vapor 
pressure equation for R134a given by Huber and McLinden19. The 
comparisons are shown in Figure 2.4. The graph shows that the 
new equation compares favorably with the existing equations. 
The statistical comparisons for the R134a data set are shown 
in Table 2.11.
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VAPOR PRESSURE COMPARISONS FOR R 134A  USING HUBER—McLINDEN EQN.
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FIG 2.4a Comparison of experimental vapor pressures with calculated values for R134a.
( O )  Goodwin and Weber; (□) Arita et.al.; (A) Zhu and Wu ; (+) 
Baehr and Tillner-Roth; (★) Weber; ) Wilson and Basu; (•)
Piao et al.; (■) Nishuimi and Yokoyama; (▲)Magee and Howley; (* ) Morrison and Ward.
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VAPOR PRESSURE COMPARISONS FOR R 134A  USING HUBER—McLINDEN EQN.
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FIG 2.4b Comparison of experimental vapor pressures with 
calculated values for R134a.
( O )  Niesen; (□) Maezawa; (A) Baroncini; (+) Fukushima.
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Table 2.11 : Statistical Comparisons for R134a Data
for all data.

Equation AAD, % BIAS,% RMS, %

McLinden 0.179 0.108 0.337

Sim Anneal 0.177 5.93 10^ 0.326

The overall comparisons for the vapor pressure equations 
shown in Table 2.12.

2.4 Summary

Simulated annealing method seems to have numerous 
potential applications in thermodynamics for developing vapor 
pressure equations and equations of state. One of the primary 
disadvantages of simulated annealing experienced in this work 
was the time factor. Simulated annealing took a lot of time 
to find a good equation of state. One of the reasons for this 
problem is that simulated annealing was used in conjunction 
with the linear least squares method. If simulated annealing 
could be made more efficient, it can applied to developing new 
equations of state with significant ease.
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3. APPLICATION OF STEPWISE REGRESSION METHOD TO THE 
DEVELOPMENT OF A NEW EQUATION OF STATE FOR R134a

In this work, the stepwise regression method is used in 
conjunction with multiproperty fitting to develop two new 
equations of state SRM-20 and SRM-29, for the' refrigerant 
R134a (tetrafluoroethane). In the development of these
equations of state PVT, second virial, sound velocity, Cv, Cp, 
and saturation boundary data were used. In this chapter, the 
fitting techniques for all these different kinds of data and 
the results will be discussed.

The fitting form conventionally used for most equations 
of state involves pressure as a function of temperature and 
density, in other words, P = P(p,T). In this pressure explicit 
form, not all functions of p and T can be used while retaining 
analytic closed forms for derived properties. This is because 
some properties require integration of the equation of state 
and not all possible functional forms are integrable. This 
problem can be eliminated to a great extent by using the 
Helmholtz free energy form. This is due to the fact that all 
of the thermodynamic properties can be obtained from the 
Helmholtz free energy through differentiation. The Helmholtz 
free energy is used (as opposed to the Gibbs free energy)
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since it is a natural function of density and temperature 
i.e., f (p ,T). This function can further be divided into the 
contribution due to the ideal gas f°(p,T) and the residual 
part fr(p,T). This relationship can be expressed as,

f(p,T) = fO(p,T) + f r ( p , r) (3 .1)

The ideal contribution in this case f°(p, T) is obtained 
by integrating the total differential of the ideal gas 
Helmholtz free energy.

dA* = -p'dV - S*dT 
from some reference state (p0,T0) to the state of interest 
(p,T). S* in the above equation is obtained from the ideal- 
gas heat capacity correlation developed by McLinden et al.

Cp = a + bT + cT2 ( 3 . 2 )

where a = 1 . 9 4 0 0 6 ,  b = 2 . 5 8 5 3 1  1 0 %  c = - 1 . 2 9 6 6 5  1 0 ^ , T is the 
temperature in kelvin.

Once the ideal part of the equation is obtained, the 
residual of the Helmholtz free energy has to be determined. 
The function to be determined here is the dimensionless molar 
Helmholtz free energy as a function of the dimensionless 
density 6=p/pc and reciprocal temperature r=Tc/T.
Defining $ = f/RT this can be written as
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■f ( Ô , t ) =  + . f  r ( ô , T )

RT RT RT

= 0^(0,T) + <S>r{b,T) (3.4)

The stepwise regression method is used to obtain the residual

3.1 Bank of Terms

The stepwise regression method requires a bank of terms. 
This bank of terms comprises of all the possible functional 
forms which could be a part of the equation. The general form 
of the equation for R134a was assumed to be the following:

» r = S" ! a„ ôj -V exp (-àk) (3.5)

In this study, the bank of terms consisted of 178 terms which 
are listed in the Appendix III. The computer program for 
stepwise regression is given in Appendix IV. In fitting 
properties derivatives of $r will be required. These are 
denoted by subscripts. For example, the mixed second 
derivative of $r is given by

= d2$T/ dSdr
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3.2 Fitting

Fitting in the stepwise regression algorithm is done by 
minimizing the overall weighted sum of squares, which includes 
the residuals for all the different data sets. Let yexp be the 
experimental value of any property which is used for fitting 
purposes and ycalc be the value calculated from the equation 
developed. The following sum of squares is then minimized:

x2 - Xj (3.6)

Mix5 - % [ycaic-yexJ 2'1
'exp

(3.7)
/in,j

In the above equation, the subscript j corresponds to the j* 
data set and the index m corresponds to the m* data point in 
the j* data set. The aexp corresponds to the Gaussian error 
propagation formula and is given by

a J,ra
y, z dz o?+(aAy'2

Y'X 6y z,x
(3.8)

3 . 3 Nonlinear Properties

As discussed earlier, the step wise regression method is
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a linear regression method and cannot be applied to residuals 
of properties which have nonlinear dependence on the function 
parameters. While fitting the data for finding residual 
Helmholtz free energy, nonlinear terms are encountered in the 
Cp fit and sound velocity fit.

■SeIIiII=-t* < <  .s;,) + (3 .9 )
R 1+2ÔOô+ô2<Ï>ôô

In this case, the second part of the Cp equation is a 
nonlinear part and cannot be incorporated directly in stepwise 
regression. In order to get around this problem, the value of 
the non-linear part is first calculated using an equation 
developed previously. The value of that function is then 
subtracted from the experimental value of Cp giving a function 
which can be fitted by the stepwise regression method. The 
sound velocity calculations also involve nonlinear functions 
as shown below. dP/dp is needed to fit the sound velocity 
data.

RTCD{p,T) 1 dp

3.4.1 PVT Data

The following equation expresses the relationship between



T-4456 69

the pressure and the Helmholtz free energy,

(3.11)

This can further be written in the reduced form as

P(5,t )
par = 1 + (3.12)

The data sets used for the PVT fit are shown in Table. 3.1.

3.4.2 Saturated Vapor Pressure Data

The saturated vapor pressure data are incorporated in the 
fit by using the Gibbs constraint. The fact that the Gibbs 
free energy for.-thfi U q u i g  phagfeJ.a-egHaJL.te. that_fgr_the gas 
phase along the saturation boundary can be expressed in terms 
of the Helmholtz energy

The data are included in the fit by rewriting eqn. (3.13) as

where left hand side is assumed to be known. The quantities 
Ps, VL, Vv are obtained from the ancillary correlations of the 
saturation boundary.

(3.13)

Ps (VL - Vv) = A v - A l (3.14)
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Table 3.1 : Summary of available R134a PVT Data

Source No of data

points

Pressure Range 

Bars

Temperature 

Range (K)

Zhu et al.78 42 1.4 - 1.27 283-353

Tillner-Roth Baehr79 * 411 0.9 - 16.4 293-453

Tillner-Roth Baehr80* 432 7.3 - 158 243-413

Hou et al.81 429 7.5 - 709 180-380

Weber66* 69 2.2 - 53.3 321-423

Wilson and Basu67 51 10.6 — 66.7 317-448

Piao et al.68 157 8.0 - 118 313-423

Magee71 150 25.8 - 349 187-343

Morrison and Ward72 131 7.0 - 57.8 279-367

Maezawa et al.74 10 5.1 - 20.0 280-340

Baroncini et al.75 46 1.8 - 19.4 263-359

Fukushima76 63 5.5 - 57.3 294-424

Qian et al.77 21 1.3 - 19.3 320-340

Indicates Data Sets Used for Fitting
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The vapor pressure equation is given in eqn (3.15). This 
correlation was developed by regressing experimental data. 
The vapor pressure data used in developing the correlation are 
summarized in Table 3.2.

where % = T/Tc
3.4.3 Saturated Liquid and Vapor Density

The stepwise regression fitting form for the saturation 
densities is identical to that of the PVT data,

The saturated liquid density was obtained for a 
functional form developed by Ely et al18.

The available data for the saturated liquid density are 
summarized in Table 3.4. The saturated vapor densities are 
correlated as

(3.15)

(3.16)

ARTHUR LAKES LIBRARY 
COLORADO SCHOOL OF MIMES 
GOLDEN, €0 80401
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P.y = ff) ( ^ ) ' ( Z , - D F ( % ) ] - i

where F(x) = (l + ̂ 1X0'35 + ̂2X + ̂3X2 + jf4X3)

P- , T,
(3.17)

The available saturated vapor density data are present in 
Table 3.5. The coefficients C;, d; and fj for eqns. (3.15-3.17) 
are shown in Table 3.6.

For purposes of the fit saturation densities were generated 
using eqns (3.17) and (3.18) at evenly spaced temperatures 
from the triple point to the critical point.

3.4.4 C„ Data

The Cv data are fitted in the form of residual heat 
capacity ACV, where ACV is defined by.

(3.20)

The fitting form is given by the following equation

(3.21)

The data used for fitting the Cv data were reported by Magee79 
and cover the temperature range of 187-343 K.
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Table 3.2 Data Used for Saturation Vapor Pressure
Comparisons

Source No of data
Points

Pressure 
Range (MPa)

Temperature 
Range (K)

Goodwin et al,62 79 0.02-3.97 214-373
Arita et al.63 3 0.29-1.32 273-323
Zhu et al 43 0.36-3.23 279-363
Baehr and Tillner-Roth65 37 0.77-4.05 303-374
Weber66 22 1.02-3.97 313-373
Wilson & Basu67 32 0.01-3.66 211-369
Piao et al.6* 51 0.88-4.06 308-374
Kubota et al.69 25 0.13-3.97 253-373
Nishiumi & Yokoyama70 16 0.10-4.03 247-373
Magee and Howley71 19 0.0001-2.46 180-350

Morrison and Ward72 12 0.24-4.07 268-374

Niesen et al.73 14 0.99-3.77 312-370
Maezawa et al.74 14 0.38-2.46 280-350
Baroncini et al.75 64 0.08-2.98 243-359
Fukushima76 41 0.19-3.87 262-372
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Table 3.3 Data Used for Saturated Liquid Density
Comparisons.

Source No of data 

points

Density Range 

mol/dm3

Temperature 

Range K

Fukushima87 7 12.08-13.58 244-292

Fukushima et al.85 8 5.04-7.31 369-374

Yokoyama & Takahashi88 21 7.72-13.34 252-367

Hou et al.81 10 8 .49-15.29 180-360

Wilson & Basu82 9 6.86-13.73 239-372

Piao et al.*8 7 6.79-11.22 313-372

Kabata et al.86 12 5.05-9.79 343-374

Morrison and Ward72 27 5.05-12.80 268-374

Niesen et al.73 14 7.18-11.26 312-370

Maezawa et al.75 25 7.32-12.44 280-370

Fukushima76 3 8.79-10.80 323-357
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Table 3.4 Data Sets Used for Saturated Vapor Density
Comparisons.

Source No of data Density Range
points mol/dm3

Temperature 
Range K

Fukushima85 9 3. 15 - 4 .91 371-374

Weber66 5 0.60 - 2 . 33 320-365

Kabata et al.86 15 2 .04 - 4.97 361-374

Morrison and Ward72 8 0.37 - 2 . 62 298-368

Niesen et al.73 14 0.49 - 2 .95 312-370

Fukushima76 6 0.28 - 3 . 07 293-371

Table 3.5 Coefficients of the Ancillary Equations

i 1 2 3 4

C; 3.946984 -11.313271 3.693108 5.566337

d; 2.081196 -0.413003 -1.177335 1.116197

fj -0.894650 -0.023273 1.042141 -1.268685
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3.4.5 Cr Data

Fitting the Cp data is different from fitting other data
as the Cp fitting form involves as (non-linear terms) As
explained earlier, the way to get around this problem is to 
linearize the equation by calculating the value of the 
nonlinear term using a previous fit. In way the whole form 
becomes linear and can be fitted easily. The form is 
represented by the following equation.,

+ (3.22)l+2ÔOg+ô2<I>5ô

The data sets used for Cp comparisons are shown in Table 3.6

3.4.6 Second Virial Data

The second virial data are incorporated in the fit by 
using the form shown below.,

£(t) pc = lim $ 0 (0 ,1:) (3.23)
Ô-0

The data sets used for fitting the second virial data are 
shown in Table 3.7.
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Table 3.6 Data Sets Used for Cp Comparisons

Source Temperature Range, K Pressure Range, MPa

Saitoh et al.89 275 - 356 2.6 - 34.9

Nakagawa et al.90 273 - 356 1.0 - 3.0

Table 3.7 Data Sets Used for Second Virial Comparisons

Source Temperature
Range, K

Goodwin & Holdover92 235 - 440

Weber66 323 - 423

Tillner-Roth and Baehr78 293 - 453

3.4.7 Sound Velocity Data

The sound velocity data cannot be fitted directly as it 
is nonlinear in the Helmholtz free energy. As described in 
the introduction, (dp/dp) data is generated from the sound
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velocity data and used in the fit. The sound velocities are 
calculated from the obtained fit using the equation 3.24.

W2{p,T) = (1 + 20<&f + 020f6) (3.24)

The (dp/dp) data are fitted in the form shown in eqn. (3.25) .

-f£ = RT(1 + 2Ô4>6 + Ô2»66) (3.25)dp

The available sound velocity data are summarized in Table 
3.8.

3.5 FIXED POINTS

The values for triple points, critical point and the 
boiling points used by various equations for R134a are listed

Table 3.8 Data Used for Comparisons of Sound Velocity

Source Temperature Range, K Pressure Range,MPa

Guedes et al .91 179-380 0.1-71

Goodwin and Holdover92 231-340 0.01-0.6

Takagi93 290-379 sat-75
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in the Table 3.9. In this table, the HM equation is the 
Huber-McLinden18 equation of state. The HE equation is the 
Huber-Ely19 equation of state and the SRM equation is the 
equation developed using the stepwise regression method.

Table 3.9 Fixed Points for R134a

EOS Tt/K Tb/K Tc/K Pc/ (Bar) pcmol/dm3

HM 169.85 247.08 374.179 40.56 5.0308

HE 374.179 40.5859 5.0308

SRM-2 0 169.85 247.08 374.179 40.5859 5.0308

SRM-29 169.85 247.08 374.18 40.582 4.9798
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4. RESULTS

Two different equations of state SRM-2 0 and SRM-29 for 
R134a were determined using the stepwise regression algorithm. 
They differ in that SRM-2 0 equation was developed using the 
data available to Huber, McLinden and Ely when they developed 
their equations while the SRM-29 equation incorporated a new 
set of data that was published by Tillner-Roth in 1993. The 
first equation contains 20 terms while the second equation has 
29 terms in it. These equations are referred to SRM-2 0 and 
SRM-2 9 in the text.

4.1 TERMS AND COEFFICIENTS

The fitting form for the 2 0-term equation of state 
developed using the stepwise regression method is shown in 
equations 4.1a.

RT = E l l  a „  0 JV "  + E l s  a n àW-Exp (-6*") (4.1a)

The coefficients of the terms and the terms are shown in
Table 4.1a.
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The 29-term equation of state developed using the 
stepwise regression algorithm is given in eqn. (4.1b). The 
coefficients of the terms are given in Table 4.1b.

RT = E l i  an 8JV "  + E l g  an àj^ E X P  ( -Ô*”) (4.1b)

The equations developed using the stepwise regression 
method were compared with the 32-term Schmidt-Wagner equation 
developed by Huber and Ely18, and with the 3 2-term MBWR 
equation published by Huber and McLinden19. The Huber-Ely
equation terms are shown in Table 4.2 and the equation is 
given in eqn (4.2). The i, j and k correspond to the 
exponents in eqn (4.2). The functional form of the 32-term 
MBWR equation developed by Huber and McLinden is given in eqn. 
(4.3) and the coefficients are given in Table 4.3. It is 
important to note that the 32-term MBWR equation has 40 terms 
in the Helmholtz representation. The Schmidt-Wagner equation 
is a 32-term Helmholtz equation.
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Table 4.1a Coefficients of the terms in the 20 terms
equation developed using Stepwise Regression 
Method.

No Coefficient k j i

1 0.515642224879 0 1 0
2 -0.193917011718 1001 0 1 1.5
3 0.537938165912 0 1 2
4 0.401426659968 10"01 0 2 -0. 5
5 0. 305273248580 10'01 0 4 0
6 -0. 297810890688 10"02 0 6 0
7 0.226854465512 lO'03 0 8 0
8 -0.483748925968 10"06 0 11 0
9 -0.332238253273 1 1 3
10 -0. 854539536926 lO'01 1 4 2
11 -0.148963202736 2 1 5
12 0.237064187194 lO'01 2 2 IT)

in

13 -0. 473360114117 lO 01 2 2 8
14 -0.237764417898 lO'02 2 10 2
15 0.164691052754 lO'02 2 10 4
16 0. 348274034129 lO*04 2 13 4
17 -0. 492250920960 10"M 2 14 4
18 -0.449774416003 lO'02 3 3 24
19 0.191748141792 lO'02 4 4 0
20 -0.152032540488 lO'02 5 4 19
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Table 4.1b Coefficients of the terms eauation develooed usina the steowise for the 29 rearession term method.
No. Coefficient k i i
1 0.841109200503 0 1 0
2 -0.125757148057 1001 0 1 1
3 -0.491616856151 0 X 1.5
4 0.743368672405 10"01 0 2 1.5
5 0.143508418211 io-°i 0 4 -0. 5
6 -0.149900959363 10'04 0 8 2
7 0.139111200775 10*05 0 11 0
8 0.215271872748 1 1 0
9 -0.514743386174 1 1 1
10 -0.721264439476 10"01 1 2 5
11 -0.897033194387 10-01 1 4 3
12 -0.197723096804 10-°3 1 5 6
13 0.364194630679 10'02 1 6 4
14 -0.654581678091 2 1 9
15 0.709809808513 2 1 10
16 -0.199287296713 2 1 11
17 0.250141817331 lO-01 2 5 2
18 0.687163601800 1O*03 2 6 12
19 -0.258945722826 IQ-02 2 7 10
20 0.435245157915 lO'02 2 8 6.5
21 -0.477747611374 lO*03 2 10 4
22 0.353515856584 lO"03 2 11 7
23 -0.364671395761 lO-04 2 14 4
24 0.194518835486 10-°1 3 2 15
25 -0.299639515710 IQ-01 3 3 24
26 0.942077507052 lO"02 3 5 23
27 0.416267736322 1 O’02 4 2 8
28 0.169876569322 IQ-02 4 4 38
29 -0.108950129049 lO'02 5 4 19
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Table 4.2 : Huber-Elv Eauation of state
No. Coeff icient k j i
1 6.9850186888 1 O"01 0 1 0
2 -2.4178317436 0 1 1.5
3 7.3378948102 10*01 0 1 2.5
4 -4.1495768445 10'02 0 2 -0. 5
5 4.0532419921 10"01 0 2 1.5
6 -1.5898815083 10"01 0 2 2
7 7.2731621002 10'02 0 3 0
8 -6.1352048664 lO"02 0 3 1
9 -6.4311629531 lO"02 0 3 2.5
10 6.2851751422 ] O'04 0 6 0
11 1.1155870005 lO"03 0 7 2
12 8.0357317942 lO*07 0 7 5
13 -2.0918379083 m-04 0 8 2
14 -5.1830999804 10'01 2 1 5
15 1.3728130727 10"01 2 1 6
16 2.5590649449 lO"01 2 2 3 . 5
17 -1.4462862070 lO"01 2 2 5.5
18 -2.3839665361 10-Q1 2 3 3
19 -1.9663126342 lO"02 2 3 7
20 -1.0498227490 lO-02 2 5 6
21 -1.8993873817 lO-03 2 6 8 . 5
22 -2.7991913410 10 02 2 7 4
23 4.8422141429 10-°3 2 8 6.5
24 -1.1647772450 lO'03 2 10 5.5
25 1.3054121301 lO"03 4 2 22
26 5.3318443331 lO-02 4 3 11
27 -4.1079326809 ooH 4 3 18
28 -7.6728830119 lO"02 4 4 11
29 5.7908973713 lO’02 4 4 23
30 1.2353764109 4 5 17
31 -1.3769795888 4 5 18
32. ...  1.-5,018250896-, lO’01 4 5 23



T-4456 85

The Huber-Mclinden equation is shown table 4.3. The form of 
the equation is shown in equation 4.3.

RT = K L  b" 0JV + K L  bn (4.2)

P-pRT = b" PjTi + 5T.19 bn P ^ ^ x p JL\*
Pcj

(4.3)

4.2 PVT DATA
The 1992 data set published by Tillner-Roth Baehr (TRB) 

was used for fitting all the equations. The comparisons for 
the TRB data set are shown in Figures 4.1 and 4.2. The 
Huber-McLinden, Huber-Ely and SRM-20 equation fit the data 
well away from the critical region. Near the critical region, 
these equations show higher deviations. The SRM-29 term 
equation fits the data well over the whole range of PVT 
measurements including the critical region. Most of the 
deviations are within -0.5 and +0.5%. In this case, the SRM- 
29 equation is markedly better in reproducing the PVT results, 
especially near the critical region at pressures around 40 
bar. Statistical summaries of the deviations are presented in 
Table 4.4. For the statistical test, AADP is the absolute 
average deviation for pressure, AAD is absolute average 
deviation for density, RMS
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Table 4.3 Huber-Mclinden Eauation: Coefficients and terms
No. Coefficients k j i
1 0. 965209362220 10*01 0 2 1
2 -0.401824768890 1001 0 2 ino

1 0. 395239532860 1002 0 2 0
4 0. 134532868960 1004 0 2 -1
5 -0. 139439741350 lO07 0 2 — 2
6 -0.309281355180 1002 0 3
7 0.292381512280 lO01 0 3 0
8 -0.165146613560 10w 0 3 — 1
9 0. 150706003120 lO07 0 3 -2
10 0.534973948310 lO"04 0 4 1
11 0.543933317620 0 4 0
12 -0.211326049760 lO03 0 4 -1
13 -0.268191203850 lO01 0 5 0
14 -0.541067125950 0 6 -1
15 -0.851731779400 lO03 0 6 -2
16 0.205188253650 0 7 -1
17 -0.733050188090 lO02 0 8 — 1
18 0.380655963860 lO01 0 8 -2
19 -0.105832087590 0 9 -2
20 -0. 679243084420 lO06 2 3 -2
21 -0. 126998378600 lO09 2 3 -3
22 -0.426234431830 lO05 2 5 -2
23 0. 101973338230 lO10 2 5 -4
24 -0. 186699526780 lO03 2 7 -2
25 -0.933426323420 lO05 2 7 -3
26 -0.571735208960 lO01 2 9 -2
27 -0. 176762738790 lO06 7 9 -4
28 -0. 397282752310 lO"01 2 11 -2
29 0.143016844800 lO02 2 11 -3
30 0.803085294260 lO*04 2 13 -2
31 -0.171959073550 2 13 -3
32 0.226238385660 lO01 2 13 -4
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FIG 4.1 Comparison of experimental densities of Tillner-Roth 
and Baehr (1992) with calculated densities.
(O) 293 K; (□) 303 K; (A) 313 K ; (+) 323 K; (★) 333 K;
(T ) 343 K; (•) 353 K; (■) 363 K; (a )368 K; (# ) 373 K.
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and Baehr (1992) with calculated densities.
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Table 4.4 : Statistical comparisons for Tillner-Roth
Baehr f1992 ̂ data

EQUATION NO OF RTS AAD % 
AADP %

BIAS % 
BIASP %

RMS % 
RMSP %

HE 411 0.134 0. 048 0. 426
0. 077 -0.045 0.172

HM 411 0. 086 0. 000 0.227
0. 061 0. 018 0.155

SRM-2 0 411 0. 074 -0.017 0.265
0. 044 0. 001 0. 088

SRM-29 411 0. 023 -0.009 0. 055
0. 017 0. 006 0. 031

is the root mean square error)and RMSP is for the pressure.
The data set by Weber was used for fitting by HM, HE and 

the SRM-20. The comparisons for this data set are shown in 
Fig 4.3. All the equations fit this data to within an 
accuracy of ±1%. The experimental accuracy of this data set 
was reported to be ±0.02% in density. The statistical 
comparisons for the Weber data set are shown in Table 4.5. We 
note in this case that the SRM-2 0 and HM equations represent 
the data slightly better than the SRM-2 9 equations which did 
not incorporate this data set.
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Table 4.5 : Statistical comparisons for Weber data

EQUATION NO OF RTS AAD % BIAS % RMS %

.
AADP % BIASP % RMSP %

HE 69 0.241 0.237 0. 218
0.114 -0.112 0. 082

HM 69 0. 076 0. 042 0. 093
0. 036 0. 017 0. 042

SRM-2 0 69 0. 092 -0.007 0.145
0. 044 -0.003 0. 069

SRM-29 69 0.137 0.135 0.132
0. 059 -0.057 0. 045

particularly in the 370-380 K region. This implies a slight 
inconsistency between the Weber and TRB(1993) data sets.

The (1993) TRB data set was used only by the SRM-29 
equation for fitting purposes. The comparisons for this data 
set are shown in Fig 4.4, 4.5 and 4.6. For the low
temperature isotherm, all the equations predict the data 
within ±0.2%. For isotherms close to the critical temperature, 
higher deviations are observed. The SRM-29 term equation fits 
this data best. The experimental accuracy of this data set was
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Table 4.6 : Statistical comparisions for (1993) TRB data

EQUATION NO OF RTS AAD % 
AADP %

BIAS % 
BIASP %

RMS % 
RMSP %

HE 432 0. 266 -0.181 0.515
6.066 5.902 14.991

HM 432 0.141 -0.037 0.401
6.263 5.801 15.392

SRM-2 0 432 0.168 -0.087 0.414
5.967 5.761 15.10

SRM-29 432 0. 030 -0.010 0.103
0.272 0.157 0. 702

reported to be ±0.1%. The statistical comparisons for the TRB 
data set are shown in Table 4.6. The SRM-29 equation which 
uses this data set in the fitting process, is better by almost 
an order of magnitude of the data set.

The data set by Hou et al. and Tillner-Roth and 
Baehr(1993) overlap. All the equations used either one of the 
data sets. The Hou data set was used for fitting by HM, HE 
and the SRM-20. The Tillner-Roth Baehr (1993) data set was 
used by the SRM-2 9 equation.
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The comparisons for the Hou et al, are shown in Fig. 4.7 
and 4.8. The lower temperature isotherms are fitted by both 
equations to within an accuracy of ±0.2%, whereas the 
isotherms near the critical temperature are fitted to within 
an accuracy of ±0.6%. The accuracy of this data set was 
reported to be ±0.1% in density. The statistical comparisons 
for the Hou et.al. data set are shown in Table 4.7.

Table 4.7 : Statistical comparisons for Hou et.al. data

EQUATION NO OF RTS AAD % 
AADP %

BIAS % 
BIASP %

RMS % 
RMSP %

HE 429 0.144 0.104 0.163
2.983 -0.437 5.829

HM 429 0.134 0. 099 0.158
2.829 —0.454 5.708

SRM-2 0 429 0.149 0.105 0.215
2.770 0.473 5.446

SRM-2 9 429 0.174 0.171 0.174
4 . 799 -4.020 12.306
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The Morrison and Ward data set was used by HM, HE and the 
SRM-2 0 equation. This data set overlaps both the Tillner-Roth 
Baehr (1993) and the Hou et al. data set. The comparisons for 
this data set are shown in Fig 4.9 and 4.10. This data set is 
represented well by all equations. The experimental accuracy 
of this data set was reported to be within ±0.3% in 
density.The statistical comparisons for the Morrison and Ward 
data set are shown in Table 4.8.

Table 4.8 : Statistical comparisons for Morrison and Ward data

EQUATION NO OF RTS AAD % 
AADP %

BIAS % 
BIASP %

RMS % 
RMSP %

HE 128 0. 058 0. 025 0.101
1. 665 0. 205 2.377

HM 128 0. 054 0. 015 0. 097
1.575 0. 450 2 .260

SRM-2 0 128 0.101 0. 002 0.140
4 . 532 3.553 5. 636

SRM-29 128 0. 073 0. 043 0.109
3 . 077 -1.919 5.174
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The overall comparisons for all of the PVT data sets are 
shown in Table 4.9.

Table 4.9 : Overall comparisons for PVT data

EQUATION NO OF PTS AAD % 
AADP %

BIAS % 
BIASP %

RMS % 
RMSP %

HE 1341 0.141 -0.037 0.401
2.848 2 . 105 9.419

HM 1341 0.195 -0.070 0. 381
3 . 002 2 . 052 9.657

SRM-2 0 1341 0.129 0. 00 0. 314
2 . 824 2 . 007 9.473

SRM-2 9 1341 0. 079 0. 056 0.149
1. 631 -1.237 7.229

4.3 Second Virial Coefficients

The comparisons for all the virial data sets are shown in 
Fig. 4.11. The virial data is represented well by all 
equations to a temperature of 300 K. Below this temperature,
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FIG 4.11 Comparison of experimental Second Virial
Coefficients with calculated densities.
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the deviations increase rapidly for the Weber data set for all 
equations. The overall statistical comparisons for the second 
virial data are shown in Table 4.10. It is interesting to 
note that the inclusion of the TRB (1993) data set which goes 
to 24 3 K, causes a major discrepancy with Goodwin and 
Holdover's low temperature virials.

Table 4.10 : Overall comparisons for second virial data

EQUATION NO OF PTS AAD
cm3/mol

BIAS 
cm3/mol

RMS
cm3/mol

HE 42 0.346 0. 013 0.418

HM 42 0.473 -0.050 1. 025

SRM-2 0 42 0.392 -0.013 0.418

SRM-29 40 0.719 0.246 1.396

4.4 Isochoric Heat Capacity

There is only one data for Cv data by Magee (1992) . This 
data set was used by all equations. The comparisons for this
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Table 4.11 : Overall comparisons for ischoric heat capacity
data

EQUATION NO OF PTS AAD % BIAS % RMS %

HE 150 0.282 -0.050 0. 363

HM 150 0. 367 -0.179 0. 398

SRM-2 0 150 0. 356 -0.017 0.439

SRM-29 150 0. 305 -0.059 0. 369

data set are shown in Fig. 4.12. All the equations show good 
prediction of the experimental values for this data set. The 
overall statistical comparisons for isochoric heat capacity 
data are shown in Table 4.11.

4.5 Isobaric Heat Capacity

The comparisons for Cp data set by Saitoh et al. are 
shown in Fig 4.13. All the equations fit this data set to 
within ±1.5%. The overall statistical comparisons for isobaric 
heat capacity data are shown in Table 4.12.
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Table 4.12 : Statistical tests for isobaric heat capacity data

EQUATION NO OF PTS AAD % BIAS % RMS %

HE 31 0.594 -0.581 0. 386

HM 31 0. 602 -0.588 0.341

SRM-2 0 31 0.863 -0.863 0.291

SRM-29 31 0.438 -0.408 0.336

4.6 Speed of Sound

The Guedes and Zollweg data set was used for fitting 
sound velocity data by HM, HE and SRM-2 0 equation. The sound 
velocity data was used to(generate dP/dp data)which was then 
fitted. Almost all the equations represent the isotherms 
very well above the critical pressure, whereas around the 
critical point, all equations fit the data within ±3.0% as 
shown by Fig 4.14. The experimental accuracy of this data set 
was reported to be 1.0 m/s in sound velocity. The overall 
statistical comparisons for the sound velocity data are shown 
in table 4.13.
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Table 4.13 : Overall statistical tests for sound velocity
data

EQUATION NO OF PTS AAD % BIAS % RMS %

HE 304 0.15 -0. 05 0.27

HM 304 0.20 0.01 0.38

SRM-2 0 304 0.27 -0.12 0.48

SRM-2 9 304 0.36 -0.10 0.59

We note that inspite of the SRM-29 equation superior 
performance for PVT behavior, it does not represent the sound 
velocity as well as the other equations. The comparisons for 
the Goodwin and Moldover data are shown in Figs. 4.14 and 
4.15. HM and SRM-2 0 equations represent this data well, 
while the HE equation shows systematic deviations for the 
lower temperature isotherms. The experimental accuracy of 
this data set was reported to be ±0.01% in sound velocity.

4 .7 Saturation Boundary

4.7.1 Saturated Vapor Pressure
Comparisons for the vapor pressure experimental data
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are shown in Fig 4.16. These comparisons were made with the 
data sets used in developing the ancillary correlation 
described in the previous section. All the equations 
represent the data well within an accuracy of ±1%. The 
statistical comparisons for vapor pressure data are shown in 
Table 4.14.

Table 4.14 Statistical comparisons for vapor pressure data

EQUATIONS AAD % BIAS % RMS %

HE 0. 983 -0.983 0.372

HM 0. 461 -0.441 0.474

SRM-2 0 1. 087 -1.087 0. 349

SRM-29 0.184 -0.010 0. 346

4.7.2 Saturated Liquid Density

The saturated liquid density data was generated using a 
correlation developed from experimental data. The comparisons 
for the data used while developing the correlation are shown 
in Fig 4.17a & b. All the equations represent the data well 
within an accuracy of ±1%. The statistical comparisons for 
saturated liquid density data are shown in Table 4.15.
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Table 4.15 Statistical comparisons for saturated liquid
density data

EQUATIONS AAD % BIAS % RMS %

HE 0.433 -0.300 1.181

HM 0.496 0.369 1.782

SRM-2 0 0.465 0.231 1.612

SRM-29 1.20 0.982 1.162

Table 4.16 Statistical comparisons for saturated liquid 
density data used for fitting purposes.

EQUATIONS AAD % BIAS % RMS %

HE 0.141 -0.076 0.293

HM 0.154 0.127 0.174

SRM-2 0 0.113 -0.019 0.169

SRM-29 0.118 0.027 0.205
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4.7.3 Saturated Vapor Density

The saturated vapor density data used in the fit was 
generated using a correlation developed from experimental data 
described previously. The comparisons for the data used to 
develop the correlation are shown in Fig 4.18. All the 
equations represent the data within an accuracy of ±1%. The 
statistical comparisons for saturated vapor density data are 
shown in Table 4.17 and 4.18.

Table 4.17 Statistical comparisons for saturated vapor
density data

EQUATIONS AAD % BIAS % RMS %

HE 1.748 -0.172 3 . 372

HM 1.891 -1.281 3.107

SRM-2 0 1.519 -0.777 3 . 096

SRM-29 2.067 0.915 3 .117
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Table 4.18 Statistical comparisons for saturated vapor
density data used for fitting

EQUATIONS AAD % BIAS % RMS %

HE 0. 613 -0.133 0.741

HM 0.810 -0.810 0.536

SRM-2 0 0.411 -0.362 0.553

SRM-29 0.443 0.123 0. 587

The overall comparisons for all equations are shown in 
Table 4.19.
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5. CONCLUSIONS AND RECOMMENDATIONS

The equation of state for R134a recommended as a norm by 
the report published by Center of Thermodynamics Studies94 is 
the Huber-McLinden equation. One of the primary reasons 
stated by this report for recommending the HM equation is the 
fact that accurate low pressure vapor phase properties are 
more important for most refrigeration systems. The HM 
equation predicts these properties very well. The SRM-20 
equation for R13 4 proposed in work compares very favorably 
with the HM equation in the low pressure vapor phase 
properties. One of the advantages of the SRM-20 is the fact 
that the SRE has only 20 terms in it as compared to the HM 
equation which has 32 terms in it and in the Helmholtz free 
energy form, it would have 40 terms. In addition to this the 
SRM-2 0 equation is in the form of Helmholtz free energy and 
this form makes it more convenient to derive other properties. 
The HM equation is in the form of pressure, and thus deriving 
some of the properties involves complicated integrals.

The SRM-29 equation does well in the critical region as 
compared to the HM equation. One of the problems with the 
SRM-29 equation is in the sound velocity data. This problem 
could possibly rectified by modifying the weighing scheme.
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One of the recommendations for this work would be tou
perform more extensive thermodynamic tests on the SRM-2 0 and 
SRM-29 terms to examine their validity. Also work should be 
done to evaluate the impacts of weighing schemes for the fit. 
Since the stepwise regression method works for pure fluids, 
its scope should be extended to mixtures. Also, work should 
be done to incorporate the simulated annealing method in the 
stepwise regression method.
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APPENDIX I

This example is about developing a vapor pressure equation for 
C02. There were 15 terms in the bank of terms in this case. 
Some of terms included were t 1 5 ,  t 5 ,  t 6  etc. The fitting form 
used for the equation was.,

For this example.,
COEF = Value of the coefficient
SDCO = Standard Deviation of the Coefficient
STUDT = Student-t Value
PROBAL = Probability of Student-t Distribution 
PROBF = Probability of Fisher-F Distribution 
FISH = Value of Fisher-F Test

c
(1.24)
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Table 1.4 Table with the functional forms
(exponents of r)

1 1

2 1. 66

3 6.5

4 2.5

5 1.5

6 7.5

7 3.0

8 4.0

9 5.5

10 7.0

11 8.5

12 6.0

13 3.5

14 8. 0

15 -1.0
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Terms 1 and 3 were randomly chosen terms which were 
added initially to the equation.,

SUM OF SQUARES = 0.19080269D+04
THE TERM 1 HAS BEEN ADDED TO THE EQUATION
SUM OF SQUARES=# 0.12938696D+02
THE TERM 3HAS BEEN ADDED TO THE EQUATION
SUM OF SQUARES=, 0.18679742D+01
KRF = 0
NGO = 0
THE TERM WITH MINIMUM Q-VALUE IS 4 

QMIN= 0.11361918D-01 
THE TERM 4 HAS BEEN ADDED TO THE EQUATION 
SUM OF SQUARES=, 0.11361918D-01
STD = 0 .654791E—02

SDCO COEF STUDT PROB

1 0. 44572E-02 -0.68420E+01 0.15350E+04 0.10000E+01

3 0. 80621E+01 -0.83852E+02 0.10401E+02 0.10000E+01

4 0. 70925E-01 -0.14759E+02 0.20809E+03 0.10000E+01

FISH=,0.14 0292E+01 PROBAL =0.997015E+00 
KRF = 0
NGO = 0
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THE TERM WITH MINIMUM Q-VALUE IS 5 
QMIN= 0.10187966D-01 

THE TERM 5HAS BEEN ADDED TO THE EQUATION 
SUM OF SQUARES=, 0.10187966D-01
STD = 0.621215E- 02

SDCO COEF '* STUDT PROB

1 0.25325E—01 -0.67043E+01 O.26473E+O3 0.10000E+01

3 0.13020E+02 -0.14197E+03 0.10904E+02 0.10000E+01

4 0.3 0115E+00 -0.13140E+02 O.43632E+O2 0.10000E+01

5 0.11132E+00 -0.61397E+00 0.55155E+01 0.10000E+01

FISH=,0.111102E+01 PROBAL =0.803780E+00 
KRF = 0
NGO = 0
THE TERM WITH MINIMUM Q-VALUE IS 15 

QMIN= 0.96592751D-02 
THE TERM 15HAS BEEN ADDED TO THE EQUATION 
SUM OF SQUARES=, 0.96592751D-02
STD = 0.606030E-02
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SDCO COEF STUDT PROB

1 0.24711E-01 -0.67062E+01 0. 27139E+03 0.10000E+01

3 0.12703E+02 -0.14134E+03 0.11127E+02 0.10000E+01

4 0.29384E+00 -0.13159E+02 0.44784E+02 0.10000E+01

5 0.10862E+00 -0.60609E+00 0.55801E+01 0.10000E+01

15 O.4492ÎE-O7 0.17043E-06 0.37941E+01 0.99982E+00

LAST TERM ADDED FAILED T-TEST,TRY EXCHANGE
THE TERM 3 HAS BEEN ELIMINATED FROM THE EQN ,/,SUM OF
SQUARES = 0.14206252D-01
THE TERM 9HAS BEEN ADDED TO THE EQUATION
SUM OF SQUARES=, 0.96398609D-02
KRF = 2
STD = 0.60542IE-02

SDCO COEF STUDT PROB

1 0.26085E-01 -0.66848E+01 0.25627E+03 0.10000E+01

4 0.34347E+00 -0.12549E+02 0. 36537E+02 0.10000E+01

5 0.11780E+00 -0.73383E+00 0.62293E+01 0.10000E+01

9 0.47666E+01 -0.53203E+02 0.11162E+02 0.10000E+01

15 0.44877E-07 0.16984E-06 0.37847E+01 0.99981E+00

THE TERM 15HAS BEEN ELIMINATED FROM THE EQN ,/,SUM OF
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SQUARES = 0.10164880D-01
KRF = 1
STD = 0.620511E-02

SDCO COEF STUDT PROB

1 0.26729E-01 -0.66828E+01 0.25002E+03 0.10000E+01

4 0.35197E+00 -0.12526E+02 0.35588E+02 0.10000E+01

5 0.12072E+00 -0.74266E+00 0.61522E+01 0.10000E+01

9 0.48849E+01 -0.53457E+02 0.10943E+02 0.10000E+01
KRF = 0
NGO = 0
THE TERM WITH MINIMUM Q-VALUE IS 15

QMIN= 0.96398609D-02 
THE TERM 15HAS BEEN ADDED TO THE EQUATION SUM OF 

SQUARES=, 0.96398609D-02, STD = 0.605421E-02

SDCO COEF STUDT PROB

1 0.2 6085E-01 -0.66848E+01 0.25627E+03 0.10000E+01

4 0.34347E+00 -0.12549E+02 0.36537E+02 0.10000E+01

5 0.11780E+00 -0.73383E+00 0.62293E+01 0.10000E+01

9 0.47666E+01 -0.53203E+02 0.11162E+02 0.10000E+01

15 0.44877E-07 0.16984E-06 0.37847E+01 0.99981E+00
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LAST TERM ADDED FAILED T-TEST,TRY EXCHANGE 
NO FURTHER REDUCTION INTER CORRELATION IS POSSIBLE 
KRF = 3
FISH=,0.105047E+01 PROBAL =0.655167E+00
THE TERM 15HAS BEEN ELIMINATED FROM THE EQN ,/,SUM OF
SQUARES = 0.10164880D-01
NGO = 1
THE TERM 9HAS BEEN ELIMINATED FROM THE EQN ,/,SUM OF
SQUARES = 0.14775974D-01
THE TERM 2HAS BEEN ADDED TO THE EQUATION
SUM OF SQUARES= , 0.10164851D-01
KRF = 2
STD = 0.620510E-02

SDCO COEF STUDT PROB

1 0.7 6290E-01 -0.60926E+01 0.79861E+02 0.10000E+01

2 0.17172E+01 0.18792E+02 0.10943E+02 0.10000E+01

4 0.64 678E+00 -0.23070E+02 0.35669E+02 0.10000E+01

5 0.13659E+01 -0.14562E+02 0.10661E+02 0.10000E+01

STD = 0.620510E-02

FINAL COEFFICIENTS SELECTED ARE
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-0.609258555255E+01 1
0.187921755958E+02 2

-0.2 3 07 00890763E+02 4
-0.14562 3928886E+02 5

THERE ARE 4 COEFFICIENTS IN THE EQUATION.

STD = 0.62051E-02

In the above shown example, there are no constraints 
added to the equation, but they can be easily added using the 
method of Lagrange Multipliers.
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APPENDIX II.

C***********************************************************
c
C A SIMULATED ANNEALING PROGRAM TO FIND A VAPOR PRESSURE
C EQUATION FOR CARBON DIOXIDE
C 
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

IMPLICIT DOUBLE PRECISION (A-GzP-Z)
LOGICAL MOJO
COMMON/INPUT/P (10 0 0),T(1000),WT(1000)
DIMENSION PCAL(IOOO)/VAR(20),R(20),F(20),PCT(1000) 
DIMENSION Q (20),M(2,20),E(20),0(20),NOSE(20),R1(20) 
IDUM=-1 
JDUM=1

C
C READING THE DATA FILE 
C

CALL DREAD(N)
OPEN(2,FILE='RESULT1.DAT',STATUS='OLD')

C
C CALL A ROUTINE TO GENERATE RANDOM NUMBERS 
C

J=1
JUMP=1 
NUM=0 
COOL=.5 
COOLF=.9
PRINT*,'NO OF RUNS ?'
READ*,NOR

C
C SET A RANDOM CRITERION FOR REJECTION OR ACCEPTANCE OF A 
C TERM 
C

PRINT*,'RAN ?'
READ*,RAN 
PRINT*,'ORDER ?'
READ*,NOT
CALL NEW(NOT,NOSE)
WRITE(2,95)

60 IF (NUM.LT.NOR) THEN
CALL JCS(M,N,NVAR,J,IDUM,RAN,R,NOSE)

C
C FIND THE COEFFICIENTS OF EACH OF THE TERMS SELECTED 
C

CALL COEFF(G,SSY,NDF)
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C0UNT=1
C
C INITIALIZE AN ARRAY TO STORE THE COEFFS 
C

DO 44 11=1,16 
Q (II)=0

44 CONTINUE
DO 45 11=1,16 
IF (M(J ,II)) THEN

Q (II)=G(COUNT)
COUNT=COUNT+l 

END IF
IF (J.EQ.l) E(II)=Q(II)

45 CONTINUE 
C
C CALL THE FUNCTION THE CALCULATE THE OBJECTIVE FUNCTION
C

CALL OBJ(N ,PCAL,M ,Q ,J ,COST,NOSE)
IF (JUMP) Cl=COST
IF (JUMP.EQ.0) C2=COST
J=2

C
C CHECK IF IT IS NOT THE FIRST PASS AND THEN DO THE
C COST COMPARTSION
C

IF (JUMP.EQ.0) THEN 
PRINT*,Cl,C2 

DELC =C2~Cl
CALL METROP(DELC,COOL,JDUM,MOJO)
IF (MOJO) THEN 
C1=C2 
COUNT=l 
DO 47 D=1,16

M (1,D)=M(2,D)
IF (M(1,D)) THEN 

E(D)=Q(D)
END IF
IF (M(1,D).EQ.0) E(D)=0 

47 CONTINUE
END IF 

END IF
C

JUMP=0
NUM=NUM+1
COOL=COOL*COOLF
GO TO 60
END IF
J=1
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C
C CALL THE OBJECTIVE FUNCITON TO OBTAIN THE
C FINAL RESULTS
C

CALL OBJ(N ,PCAL,M ,E z J ,COST,NOSE)
DO 50 1=1,16

WRITE(2,100)NOSE(I),M(1,I),E(I)
50 CONTINUE

WRITE(2,*)
WRITE(2,*)
WRITE(2,97)
DO 70 1=1,N

P(I)=P(I)*73.76462
T(I)=(1-T(I))*304.25
PCAL(I)=EXP(PCAL(I))*73.76462
PCT(I)=100*(P(I)-PCAL(I))/P(I)
WRITE(2,105)T(I),P(I),PCAL(I),PCT(I),WT(I)

70 CONTINUE
95 FORMAT(3X,'NO',7X,'MASK',7X,'COEFFICIENTS')
97 FORMAT(7X,'TEMP
F',11X,'P',llX,'PCAL',11X,'PCT',9X,'WT')
100 FORMAT(5X,12,5X,12,5X,1PE19.10)
105 FORMAT(F9.4,6X,F10.4,6X,F10.4,6X,Fll.4,3X,F10.4)

WRITE(2,*)
WRITE(2,*)
WRITE(2,*)'RAN=',RAN 
WRITE(2,*)'NO OF RUNS=',NOR 
WRITE(2,*)'COST=',COST
WRITE(2,*)'FAC1=',FAC1,'FAC2=',FAC2,'FAC3=',FAC3
PRINT*,COST
END

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c
C THIS FUNCTION RETURNS A RANDOM NUMBER 
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

FUNCTION RAN3(IDUM)
IMPLICIT DOUBLE PRECISION (A-H,M-Z)
DIMENSION M A (55)
DATA IFF /0/
MBIG=1E09 
MSEED=161803 3 98 
MZ=0
FAC=1/MBIG
IF(IDUM.LT.0.OR.IFF.EQ.0)THEN 

IFF=1
MJ=MSEED-IABS(IDUM)



T-4456 145

MJ=MOD(MJ,MBIG)
M A (55)=MJ 
MK=1
DO 10 1=1,54

II=MOD(21*1,55)
M A (II)=MK 
MK=MJ-MK
IF(MK.LT.MZ)MK=MK+MBIG 
MJ=MA(II)

10 CONTINUE
DO 40 K=1,4 

DO 30 1=1,55 
M A (I)=MA(I)-MA(1+MOD(1+3 0,55))
IF(MA(I).LT.MZ)M A (I)=MA(I)+MBIG 

30 CONTINUE
40 CONTINUE

INEXT=0 
INEXTP=31 
IDUM=1 
END IF
INEXT=INEXT+1
IF(INEXT.EQ.56)INEXT=1
INEXTP=INEXTP+1
IF(INEXTP.EQ.56)INEXTP=1
MJ=MA(INEXT)-MA(INEXTP)
IF(MJ.LT.MZ)MJ=MJ+MBIG
M A (INEXT)=MJ
RAN 3 =MJ * FAC
RETURN
END

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c
C THIS SUBROUTINE IS USED TO GENERATE A MATRIX USING THE 
C LINEAR LEAST SQUARES METHOD FROM THE GIVEN SET OF DATA
C POINTS.
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE FITTER(F,Y,NFUN)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION E (40), F(40), A(40,41)
DOUBLE PRECISION A, SY, SYY, RES, DET 
EQUIVALENCE (CCC,RES),(NC,FNC)
DATA NTR/-1/
ENTRY FIT(F,Y,NFUN)
IF(NTR) 010,030,030 

010 NP=0
NF=NFUN
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IF(NF.GT.40) GO TO 250
NG=0
SY=0.
SYY=0.
NY=NF+1 
DO 020 1=1,NY 
DO 020 J=1,NF 

020 A (J,I)=0.
IF(NTR.EQ.O) GO TO 060 
NTR=0 

030 SY=Y+SY
SYY=SYY+Y*Y
DO 040 J=1,NF
A(J,NY)=A(J,NY)+Y*F(J)
DO 040 1=1,NF 

040 A (I,J)=A(I,J)+F(I)*F(J)
NP=NP+1
RETURN
SUBROUTINE CONSTR F ,Y ,NFUN'
ENTRY CONSTR(F,Y,NFUN)
IF(NTR) 050,060,060 

050 NTR=0
GO TO 010 

060 N=NY-1
IF(NY.GT.40) GO TO 250 
DO 070 1=1,N 
A (I,NY+1)=A(I,NY)
A(NY,I)=F(I)

070 A (I,NY)=F(I)
NC=NC+1 
DO 080 I=NF,N 
A(NY,1+1)=0.00 

080 A (1+1,NY)=0.00 
NY=NY+1 
A(NY-1, NY)=Y 
RETURN
SUBROUTINE COEFF F ,Y ,NFUN'
ENTRY COEFF(F,Y,NFUN)
N=NY-1
DO 090 1=1,NF 

090 F (I)=A(I ,NY)
IF(N.EQ.l) GO TO 120 
DO 110 1=2,N 
DO 100 J=I,NY 

100 A(I-1,J)=A(I-1,J)/A(I-1,I-1)
DO 110 J=I,N
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DO 110 K=I,NY 
110 A (J ,K )=A (J ,K )-A(J,I-1)*A(I-1,K)
120 A (N ,NY)=A(N ,NY)/A (N ,N )

IF(N.EQ.l) GO TO 140 
DO 130 1=2,N 
L=N-I+2 
DO 130 J=L,N 

13 0 A(L-l,NY)=A(L-l,NY)-A(L-l,J)*A(J,NY) 
140 NTR=-1 

RES=SYY 
DO 150 1=1,NF 
RES=RES-A(I,NY)*F(I)

150 F (I)=A(I,NY)
NFUN=NP
NDF=NP-NF+NC
DF=NDF
Y=FNC
RETURN
SUBROUTINE STAT F,Y,NFUN'
ENTRY STAT(F,Y,NFUN)
TOT=SYY-SY*SY/NP
SYY=RES/DF
REG=TOT-RES
IF(TOT.NE.0.0D0) CORR=REG/TOT 
ST=1.96+(2.72+8.04/(DF*DF))/DF 
DET=1.0 
DO 160 1=1,NF 

DET=DET*A(1,1)
IF(A (I ,I).LE.0.0)GO TO 160 
A(I,I)=1./A(I,I)

160 CONTINUE
IF(NF.EQ.1) GO TO 190 
DO 180 1=2,NF 
DO 180 J=2,I 
SY=0.
DO 170 K=J,I 

170 SY=SY-A(I,K-l)*A(K-l,J-l)
180 A (I,J-l)=SY*A(I,I)
190 WRITE(6,300)

DO 240 1=1,NF 
IF(I.EQ.NF) GO TO 205 
L=NF-I
DO 200 J=1,L 
K=NF-J 
DO 200 M=1,J 
N=NF-M+1 

200 A (K ,I)=A(K ,I)-A(K ,N )*A (N ,I)
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205 IF(I.EQ.l) GO TO 220 
DO 210 J=2,I 

210 A (J-1,1)=A(I ,J-1)* SYY 
220 DO 230 J=l,I 
230 A(I,J)=A(I,J)*SYY

E (I)=ST*DSQRT(DABS(A(I ,I)))
F (I)=A(I,NY)

240 WRITE(6,310)F (I),E(I)
BB= DSQRT(DABS(SYY))
WRITE(6,320) RES, REG, TOT, BB, DET, CORR, NP 
NFUN=NDF 
RETURN 

250 WRITE(6,330)
STOP

300 FORMAT(' THE COEFFICIENTS AND THEIR ESTIMATED ERRORS 
ARE '//)

310 FORMAT(1PE19.10,' +OR-',1PE9.2)
320 FORMAT( /' ESTIMATED RESIDUAL SUM OF SQUARES

=',E17.9/
1 ' ESTIMATED REGRESSION SUM OF SQUARES 

=',E17.9/
2 ' ESTIMATED TOTAL SUM OF SQUARES

=',E17.9/
1' VARIANCE OF FIT = z,E17.9// DETERMINANT OF THE MATRIX 

=',E17.9/
4' CORRELATION COEFFICIENT =',E17.9/' NUMBER OF POINTS 

= M 5 / / )
330 FORMAT(/'THE ARRAYS IN THE FITTING PROGRAM ARE TOO 

SMALL TO HOLD T
1HE NUMBER OF CONSTRAINTS AND FUNCTIONS ASKED FOR IN /

THE CALLING PR /
20GRAM') ^
END ___ _____

SUBROUTINE OBJ(N ,PCAL,M ,G ,J ,COST,O)
C***********************************************************
c
C THIS SUBROUTINE CALCULATES THE OBJECTIVE FUNCTION 
CC***********************************************************

IMPLICIT DOUBLE PRECISION (A-G,P-Z)
INTEGER O
COMMON/INPUT/P(1000),T(1000),WT(1000)
DIMENSION PCAL(N) ,M(2,20) ,0(20) ,0(20)
SCOST=O 
DO 10 1=1,N
T1=M(J ,0(1))*G(0(1))*T(I)
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T2=M(J/0(2))*G(0 
T3=M(J,0(3))*G(0 
T4=M(J ,O (4))*G(0 
T5=M(J,0(5))*G(0 
T6=M(J,0(6))*G(0 
T7=M(J ,0(7))*G(0 
T8=M(J,0(8))*G(0 
T9=M(J/0(9))*G(0 
T10=M(J ,0(10))*G 
T11=M(J ,11)*G(11 
T12=M(J ,12)*G(12 
T13=M(J ,13)*G(13 
T14=M(J,14)*G(14 
T15=M(J ,15)*G(15 
T16=M(J ,16)*G(16

2) )*T(I)**1.9
3) ) *T(I)**6.5
4))*T(I)**2.5
5) ) *T(I)**1.5
6))*T(I)**7.5
7))*T(I)**3
8))*T(I)**4
9))*T(I)**5.5 
0(10))*T(I)**7 
*T(I)**8.5
*T(I)**6 
*T(I)**3.5 
*T(I)**8 
* (1-T(I))**2

THIS SUBROUTINE SELECTS THE TERMS RANDOMLY TO DEVELOP 
THE VAPOR PRESSURE EQUATION

/T (I)
PCAL(I)= (T1+T2+T3+T4+T5+T6+T7+T8+T9+T10 
+ +T11+T12+T13+T14+T15+T16)/ (l-T(I))
SCOST=SCOST+WT(I)*(PCAL(I)-LOG(P(I)))**2 

10 CONTINUE
C0ST=SC0ST**.5
RETURN
END

C
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c 
c 
c 
c
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c

SUBROUTINE JCS(M,N,NVAR,J ,IDUM,RAN,R,0)
IMPLICIT DOUBLE PRECISION (A-H,P-Z)
INTEGER O
COMMON/INPUT/P (10 0 0) ,T(1000),WT(1000)
DIMENSION M (2,20),F(20),R(20),VAR(20),0(20)

GENERATING RANDOM NUMBERS FOR EACH OF THE TERMS
DO 20 1=1,16 
R (I)=RAN3 (IDUM)
M (J ,I)=0 
CONTINUE 
C0UNT=1 
DO 30 1=1,16

SPECIFYING THE CONDITION FOR ACCEPTING A TERM
IF (R(I).GT.RAN) THEN

C
C
C

20

C
C
C



o 
o 
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VAR(COUNT)=1 
.M ( J, I) =1 
COUNT=COUNT+1 

END IF 
30 CONTINUE

NVAR=COUNT-1
CALCULATING THE VALUE OF EACH OF THE TERMS AT SPECIFIED 
TEMPERATURES

IIHOOQ 1,N
K=0
IF (M(J,1 .AND.K .LT.6) THEN

K=K+1
F(K)=T I)ENDIF

IF (M(J,2 .AND.K .LT.6) THEN
K=K+1
F (K) =T I)**1.9

ENDIF
IF (M(J,3 .AND.K .LT.6) THEN

K=K+1
F(K)=T I)**6.5

ENDIF
IF (M(J,4 .AND.K .LT.6) THEN

K=K+1
F (K) =T I)**2.5

ENDIF
IF (M(J,5 .AND.K .LT.6) THEN

K=K+1
F (K) =T I)**1.5

ENDIF
IF (M(J,6 .AND.K .LT.6) THEN

K=K+1
F (K) =T I)**7.5

ENDIF
IF (M(J,7 .AND.K.LT.6) THEN

K=K+1
F (K) =T I) **3

ENDIF
IF (M(J,8 .AND.K.LT.6) THEN

K=K+1
F(K)=T I) **4

ENDIF
IF (M(J,9 .AND.K.LT.6) THEN

K=K+1
F (K) =T I)**5.5

ENDIF
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IF (M(J,10).AND.K.LT.6) THEN 
K=K+1
F(K)=T(I)**7 

ENDIF
IF (M(J,11).AND.K.LT.6) THEN 

K=K+1
F(K)=T(I)**8.5 

ENDIF
IF (M(J,12).AND.K.LT.6) THEN 

K=K+1
F (K)=T(I)**6 

ENDIF
IF (M(J,13).AND.K.LT.6) THEN 

K=K+1
F (K)=T(I)* * 3 . 5 

ENDIF
IF (M(J,14).AND.K.LT.6) THEN 

K=K+1
F(K)=T(I)**8 

ENDIF
IF (M(J,15).AND.K.LT.6) THEN 

K=K+1
F(K)=(1-T(I))**2 

ENDIF
IF (M(J,16).AND.K.LT.6) THEN 

K=K+1
F(K)=1/T(I)

ENDIF 
DO 50 11=1,K
F (II)=F(II)*WT(I)/(l-T(I))

50 CONTINUE
PL=WT(I)*LOG(P(I) )
CALL FIT(F,PL,K)

40 CONTINUE 
RETURN 
END

C
SUBROUTINE METROP(DE,T ,JDUM,ANS)C***********************************************************

c
C THIS IS THE METROPOLIS ALGORITHM FOR THE SIMULATED 
C ANNEALING METHOD.
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

DOUBLE PRECISION DE,T,VAR 
LOGICAL ANS 
VAR=DE/T
IF ((DE/T).LT.-300) VAR=-3 00
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ANS=(DE.LT.0).OR.(RAN(JDUM).LT.EXP(-VAR))
RETURN
END

C
SUBROUTINE NEW(N,0)
INTEGER N,O 
DIMENSION 0(20)
DO 10 1=1,20 
IF (N.EQ.21) N=1 
0(1)=N 
N=N+1 

10 CONTINUE 
RETURN 
END

C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C
C THIS SUBROUTINE READS IN THE DATA FILE
C
(2* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C

SUBROUTINE DREAD(N)
IMPLICIT DOUBLE PRECISION (A-H,P-Z)
CHARACTER*4 NTYPE(9), ITYPE, REFER*80, RECORD*72 
COMMON/INPUT/P (10 0 0) ,T(1000),WT(1000)
DIMENSION REFER(100),IDREF(100)

NREF = 0
1=0
PRINT* , 'FACO ' , ' FACV 
READ*,FACO,FAC1
OPEN(1,FILE='C02PS.DAT',STATUS='OLD')

20 READ (1,z(A4,14,A)') ITYPE, IDENT, RECORD 
IF (ITYPE.EQ.'EOF') GO TO 1000 
IF (ITYPE.EQ.'REM') GO TO 020 
IF (ITYPE.NE.'REF ') THEN 

1=1+1
READ (RECORD,*) T(I), P(I)

IF (IDENT.GT.O) THEN 
SIGP=3E-4*P(I)

SIGT=10E-3*T(I)
WT(I)=1/SQRT(SIGP**2+SIGT**2)
W T (I)=FACO/WT(I)

ENDIF
IF (T(I).LT.300) W T (I)=FAC1*WT(I)
T (I)=1-T(I)/304.25 
P(I)=P(I)/73.76462 

GO TO 020 
ELSE
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NREF = NREF + 1 
REFER(NREF) = RECORD 
IDREF(NREF) = IDENT 
GO TO 020 

ENDIF
1000 N=I

RETURN
END
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APPENDIX III.

THESE ARE THE TERMS INCLUDED IN THE BANK OF TERMS FOR 
DEVELOPMENT OF THE EQUATION OF STATE FOR R134a.

f (Ô , T) = àiT:iExp{-àk) k*0
f (Ô, x) = ÔixJ’ k=Q

No. k i j
1 0 1 0
2 0 1 1
3 0 1 1.5
4 0 1 2
5 0 1 2.5
6 0 1 3
7 0 1 50
8 0 2 -1
9 0 2 -0. 5

10 0 2 0
11 0 2 1
12 0 2 1.5
13 0 2 2
14 0 2 3
15 0 2 40
16 0 3 -1
17 0 3 — 0.5
18 0 3 0
19 0 3 1
20 0 3 2
21 0 3 2.5
22 0 3 5
23 0 3 32
24 0 4 -1
25 0 4 0
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26 0 4
27 0 4
28 0 4
29 0 4
30 0 5
31 0 5
32 0 5
33 0 5
34 0 6
35 0 6
36 0 6
37 0 6
38 0 7
39 0 7
40 0 7
41 0 8
42 0 8
43 0 8
44 0 8
45 0 9
46 0 9
47 0 10
48 0 11
49 0 11
50 0 13
51 0 13
52 1 1
53 1 1
54 1 1
55 1 2
56 1 2
57 1 3
58 1 4
59 1 4
60 1 4
61 1 5
62 1 6
63 1 7
64 1 8
65 1 9
66 1 11
67 2 1
68 2 1
69 2 1
70 2 1
71 2 1
72 2 1
73 2 1

1
2
3

26
-1
0
1
9
0
1
2
3
1
2
5
0
1
2
5
1
2
2
0

12
7

13
0
1
3
1
5
5
2
3
5
6
4
1
8
0
1
0
5
6
7
9

10
11
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74 2 2 0
75 2 2 • 1
76 2 2 2
77 2 2 3.5
78 2 2 5
79 2 2 5.5
80 2 2 8
81 2 3 2
82 2 3 3
83 2 3 4
84 2 3 6
85 2 3 7
86 2 3 13
87 2 4 0
88 2 4 2
89 2 4 3
90 2 4 4
91 2 4 5
92 2 4 6
93 2 5 2
94 2 5 3
95 2 5 4
96 2 5 6
97 2 6 2
98 2 6 4
99 2 6 8.5

100 2 6 12
101 2 7 0
102 2 7 2
103 2 7 3
104 2 7 4
105 2 7 10
106 2 7 11
107 2 8 0
108 2 8 1
109 2 8 2
110 2 8 3
111 2 8 4
112 2 8 6.5
113 2 9 0
114 2 9 2
115 2 9 4
116 2 10 2
117 2 10 4
118 2 10 5.5
119 2 10 8
120 2 11 0
121 2 11 1

ARTHUR LAKES LIBRARY 
COLORADO SCHOOL OF MINES 
GOLDEN, CO 80401
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122 2 11 2
123 2 11 3
124 2 11 4
125 2 11 5
126 2 11 6
127 2 11 7
128 2 12 2
129 2 12 3
130 2 13 2
131 2 13 4
132 2 14 2
133 2 14 3
134 2 14 4
135 3 1 0
136 3 1 3
137 3 1 4
138 3 2 13
139 3 2 14
140 3 2 15
141 3 3 0
142 3 3 14
143 3 3 15
144 3 3 16
145 3 3 22
146 3 3 24
147 3 4 13
148 3 4 26
149 3 5 15
150 3 5 23
151 3 5 25
152 4 2 0
153 4 2 8
154 4 2 20
155 4 2 22
156 4 3 11
157 4 3 18
158 4 4 0
159 4 4 11
160 4 4 14
161 4 4 18
162 4 4 23
163 4 5 17
164 4 5 18
165 4 5 23
166 5 4 19
167 5 5 23
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APPENDIX IV.
C***********************************************************
c
C THIS PROGRAM USES THE STEPWISE REGRESSION METHOD TO
C DEVELOP A NEW
C EQUATION OF STATE FOR REFRIGERANT R134A.
CC***********************************************************

IMPLICIT DOUBLE PRECISION (A-H,P-Z)
COMMON/PVTD/NPVT,ID(2 000),WT(2000),T(2000),
P (2 000) ,D (2000)
COMMON /REFDAT/ZC, PTRP, DTRP, TTRP,CMW 
COMMON/CHECK/AA(604,604),KIR(604)
COMMON/COE/COEF(600)
COMMON/TERM/FACT(600)
COMMON/CONST/TC,PC,DC, R 
COMMON/DAT/MOBS,NCO,NMAX,NCON 
COMMON/FEEDCO/NFEED,NINIT(32)
COMMON/FISH/X(50,2),NUM 
COMMON/STAND/STD
DIMENSION PCAL(2000),A B (604,604)
CHARACTER*8 TIM
OPEN(1,FILE='R13 4ADAT.T9 0 7 ,STATUS='OLD')
OPEN(3,FILE='RESULT.DAT',STATUS='OLD')
OPEN(2,FILE='ROLD.DAT',STATUS='OLD')
OPEN(7,FILE='RNEW.DAT',5TATUS='OLD')
OPEN(11,FILE='DPDD.DAT',STATUS-'OLD')
OPEN(20,FILE-'INTT.DAT',STATUS-'OLD')
OPEN(22,FILE-'STD.DAT',STATUS-'OLD')

OPEN(21,FILE-'TERMS.DAT',STATUS-'OLD')
OPEN(25,FILE-'BWT.DAT•,STATUS-'OLD')

OPEN(26,FILE-'COEFS.DAT',STATUS-'OLD')
OPEN(30,FILE-'BRUN.DAT',STATUS-'OLD')

OPEN(31,FILE-'TRBC.DAT',STATUS-'OLD')
NCO—178 
NCON—3 
NFEED-19 
CALL INITIO 
CALL JGE

C
C INPUT THE THREE INITIAL TERMS FOR MINIMIZATION
C
C

CALL TIME(TIM)
WRITE(3,*)TIM 
READ(1,'(A)') IDUM
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READ(1,*) CRITC, TC, PC, DC, PTRP, DTRP, TTRP, CMW 
READ(1,z(A)z) IDUM
READ(1,*) NOFIT, FPVT, FCV, FDPD, FDSL, FDSV, FPS, 
FCP, FVIR, FDPT 

R=0.08314471D0
CALL DREAD(NPVT,NCV,NCR,NDP,NSAT,NVIR,NWS,NPT) 
PCC-PC 
DCC—DC 
TCC-TC 

PROBC-O.9999 
PROBR—O.75 
NMAX-NCO+NCON+1

C
C INITIALIZE THE MATRIX 
C

DO 10 1=1,NMAX 
DO 10 J=1,NMAX 

10 A A (I,J)=0
DO 13 1=1,NMAX 
DO 13 J=1,NMAX 

13 A B (I,J)=0 
C
C FIT THE SATURATION BOUNDARY 
C

CALL FITSAT(FDSL,FDSV,FPS)
C
C FIT THE SECOND VIRIAL DATA 
C

CALL FITVIR(FVIR)
C
C FIT THE PVT DATA 
C

CALL FITPVT(FPVT)
C
C FIT THE CV DATA 
C

CALL FITCV(FCV)
C
C FIT THE DPDD DATA 
C

CALL FITDPD(FDPD)
C
C ADD THE CONSTRAINTS 
C

CALL CONSTRAIN 
DO 50 1=1,NMAX 
DO 51 J=1,NMAX 

51 A A (J ,I)=AA(I,J)
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50 CONTINUE
DO 52 1=1,NMAX 
DO 53 J=1,NMAX 

53 AB (I, J) =AA (I, J)
52 CONTINUE 
C
C CALL SEEQ FUNCTION TO BEGIN MINIMIZATION 
C

NRUN=1
58 IF (NRUN.NE.1) THEN 

DO 56 1=1,NMAX 
DO 57 J=1,NMAX 

57 AA (I, J) =AB (I, J)
56 CONTINUE

ENDIF
PRINT*,'INPUT THE STARTING TERMS'

DO 112 1=1,NFEED 
READ(31,*)NINIT(I)

112 CONTINUE
C
C CALL THE STEPWISE REGRESSION SUBROUTINE 
C

CALL SEEQ(PROBC,PROBR,NEQ)
WRITE(22,*)NRUN,STD,NEQ 

IF (NRUN.EQ.1) STDNEW=STD 
IF (NRUN.NE.1) THEN

IF (STD.LT.STDNEW) THEN 
BRUN = NRUN 
STDNEW=STD 

ENDIF 
ENDIF
NRUN=NRUN+1 
IF (NRUN.LT.1) GOTO 58

C
C TAKE THE THREE TERMS WITH HIGHEST SIGNIFICANCE AND
C USING THEM AS STARTING POINTS FOR NEXT STEP
C

WRITE(3,6000)
6000 FORMAT(IX,31HFINAL COEFFICIENTS SELECTED ARE)

DO 70 11=1,NCO
WRITE(7,*)COEF(II)
IF (KIR(II).NE.1) GO TO 70 
WRITE(3,6001)COEF(II),11 

900 FORMAT(E2 0.12)
6001 FORMAT(IX,E2 0.12,110)
70 CONTINUE
C
C CALCULATE THE CRITICAL POINT
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C
CALL CRITF(PCC,DCC,TCC)

C
C DO THE SATURATION BOUNDARY COMPARISONS 
C

CALL SATCMP
C
C DO THE SECOND VIRIAL COMPARISONS 
C

CALL VIRCMP
C
C DO THE PVT COMPARISONS 
C

CALL PVTCMP
C
C DO THE CV COMPARISONS 
C

CALL CVCOMP
C
C DO THE CP COMPARISONS 
C

CALL CPCOMP
C
C DO THE DPDD COMPARISONS 
C

CALL DPDCMP
C
C DO THE SOUND VELOCITY COMPARISONS 
C

CALL WSPCMP 
CALL TIME(TIM)
WRITE(3,*)TIM 
WRITE(30,*)STDNEW 
WRITE(30,*)BRUN 
END

C
C
C

SUBROUTINE SEEQ(PROBS,PROBE,NEQ)
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c
C THIS PROGRAM USES THE STEPWISE REGRESSION METHOD
C DESCRIBED BY DE REUCK AND ARMSTRONG
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IMPLICIT DOUBLE PRECISION (A-H,P-Z)
DIMENSION SDCO(600),STUDT(600),PROB(600),QQ(600)
COMMON/COE/COEF(6 0 0)



T-4456 162

COMMON/DAT/MOBS,NCO,NMAX,NCON 
COMMON/CHECK/A A (604,604),KIR(604)
COMMON/FEEDCO/NFEED,NINIT(32)
COMMON/STAND/STD
KRF=0
NGO=0
NOCIN=0
IF (MOBS.GT.500) NAPROX=2 
ICON=NCON
WRITE(6,6001) AA(NMAX,NMAX)

6001 FORMAT(IX,16HSUM OF SQUARES =,D2 0.8)
C
C KRF=0 BEFORE SEARCH PROCEDURE STARTS AND AFTER TERM HAS 
C BEEN ADDED
C KRF=1 WHEN A TERM HAS BEEN ELIMINATED 
C KRF=2 WHEN AN EXCHANGE HAS TAKEN PLACE
C KRF=3 WHEN ALL POSSIBLE EXCHANGES HAVE BEEN TRIED OR
C THERE IS NO TERM AVAILABLE WHICH WILL REDUCE Q-VALUE
C

DO 2 0 1=1,NMAX 
20 KIR(I)=0

IF (NFEED.EQ.0) GO TO 22 
DO 3 0 1=1,NFEED 
II=NINIT(I)
NOCIN=NOCIN+l 
CALL TRADD(II)

30 KIR(II)=1
C 
C 
C
22 QREG=AA(NMAX,NMAX)

QMIN=QREG
KRF=0
NGO=0
WRITE(6,6002)KRF 
WRITE(6,6003) NGO

6002 FORMAT(IX,5HKRF =,I5)
6003 FORMAT(IX,5HNGO =,15)

DO 40 1=1,NCO
IF (KIR(I).GT.O) GO TO 40
QQ(I)=AA(NMAX,NMAX)- (AA(NMAX,I)*AA(I,NMAX)/AA(I,I)) 
IF (QQ(I).LT.O) GO TO 42 
IF (QQ(I).LT.QMIN) GO TO 41 
GO TO 40

41 QMIN=QQ(I)
IQMIN=I 
GO TO 40

42 WRITE(6,6004) I



T-4456 163

6004 FORMAT(IX,15HQ-VALUE OF TERM,13,17HHAS GONE NEGATIVE) 
40 CONTINUE

DIVl=MOBS-NCON-NOCIN-l
DIV2=MOBS-NCON-NOCIN
IF (QMIN/DIV1.LT.QREG/DIV2) GO TO 50 
KRF=3
WRITE(6,6002)KRF 
NGO=l
WRITE(6,6003) NGO 
IF (NOCIN.NE.0) GO TO 85 
WRITE(6,6016)

6016 FORMAT(IX,3 3HSUM OF SQUARES CANNOT BE REDUCED 
+ ,/,30HTHERE ARE NO TERMS IN THE EQN.)
STOP 

50 MINQ=IQMIN
WRITE(6,6005)IQMIN,QMIN

6005 FORMAT(IX,32HTHE TERM WITH MINIMUM Q-VALUE IS,15,/,5X, 
+ 5HQMIN=,D15.8)

C
CALL TRADD(MINQ)
NOCIN=NOCIN+l 
KIR(MINQ)=1

C
C
C

IF (NOCIN.LT.2) GO TO 22
C
C
C
27 IF (ICON.EQ.O) GO TO 200

IF (NOCIN.LT.NCON) GO TO 22 
DO 60 1=1,NCON 
Il=NCO+I 
CALL TRADD(II)

60 KIR(II)=1 
ICON=0

C
C
2 00 CALL STATS(VAR1,VAR2,SDCO,STUDT,PROB,NOCIN)
C
C

MST=MINST(STUDT)
DO 70 1=1,NCO 
IF (KIR(I).EQ.O) GO TO 70 
IF (PROB(I).GT.PROBS) GO TO 70 
IF (KRF.EQ.2) GO TO 71 
IF (MST.EQ.MINQ) WRITE(6,6006)

6006 FORMAT(IX,42HLAST TERM ADDED FAILED T-TEST,TRY
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EXCHANGE)
IF (MST.EQ.MINQ) GO TO 85 

71 MELIM=MST
CALL TRELIM(MELIM)
KRF=1
WRITE(6,6002) KRF 
NOCIN=NOCIN-l 
KIR(MELIM)=0 
GO TO 2 00 

70 CONTINUE
IF (KRF.EQ.l) GO TO 22
IF (KRF.EQ.2) GO TO 85
IF (KRF.EQ.3) GO TO 300

C
C
C
80 MST=MINST(STUDT)

NFREl=MOBS-NCON-NOCIN
NFRE2=NFRE1+1
IF (VAR2.LT.VAR1) WRITE(6,6007) VAR2,VAR1 
IF (VAR2.LT.VAR1) STOP

6007 FORMAT(IX,18HF-TEST IS INVERTED,2El2.5) 
PROBAL=FISHER(NFRE1,NFRE2,VAR1,VAR2,NAPROX) 
FISH=VAR2/VAR1
WRITE(6,6008) FISH,PROBAL

6008 FORMAT(IX,6HFISH=,E12.6,2X,8HPROBAL =,E12.6) 
IF (PROBAL.GT.PROBF) GO TO 22
IF (KRF.EQ.3) GO TO 95

C
C

WRITE(6,6009)
6009 FORMAT(IX,29HINTERCORRELATION IS SUSPECTED)
8 5 QREG=AA(NMAX,NMAX)

QMIN=QREG 
DO 90 NIN=1,NCO 
IF (KRF.NE.0) GO TO 93
IF (NIN.EQ.MINQ) GO TO 90

93 IF (KIR(NIN).EQ.O) GO TO 90 
DO 91 NOUT=l,NCO 
IF (KIR(NOUT).EQ.l) GO TO 91 
QINOUT=QSWAP(NIN,NOUT)
IF (QINOUT.LT.0) GO TO 9 6
IF (QINOUT.LT.QMIN) GO TO 92
GO TO 91 

92 QMIN=QINOUT 
IIN=NIN 
IOUT=NOUT 
GO TO 91
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96 WRITE(6,6010) NIN,NOUT,QINOUT
6010 FORMAT(IX,12HSWAP OF TERM,13,9HWITH TERM 

+ ,13,17HGIVES NEGATIVE Q-, E15.5)
91 CONTINUE 
90 CONTINUE

IF (QMIN.LT.QREG) GO TO 100 
IF (NGO.EQ.1) GO TO 300 
WRITE(6,6011)

6011 FORMAT(IX,50HNO FURTHER REDUCTION INTER 
+ CORRELATION IS POSSIBLE)
KRF=3
WRITE(6,6002)KRF 
GO TO 80

C
C
95 MST=MINST(STUDT)

CALL TRELIM(MST)
KIR(MST)=0
NOCIN=NOCIN-l
NGO=l
WRITE(6,6003) NGO 
GO TO 85

C
C
100 CALL TRELIM(IIN)

NOCIN=NOCIN-l 
KIR (UN) =0 
CALL TRADD(IOUT)
NOCIN=NOCIN+l 
KIR(IOUT)=1 
KRF=2
WRITE(6,6002) KRF 
GO TO 200

300 CALL STATS(VAR1,VAR2,SDCO,STUDT,PROB,NOCIN) 
WRITE(6,6012)

6012 FORMAT(IX,31HFINAL COEFFICIENTS SELECTED ARE) 
NEQ=0
DO 201 1=1,NCO
IF (KIR(I).EQ.l) WRITE(6,6013) COEF(I),1 
IF (KIR(I).EQ.1) NEQ=NEQ+1 
IF (KIR(I).LT.l) COEF(I)=0 

2 01 CONTINUE
WRITE(6,6014) NEQ 

6014 FORMAT(IX,9HTHERE ARE,15,29HCOEFFICIENTS IN THE 
EQUATION.)
STD=SQRT(VAR1)
WRITE(6,6015) STD

6013 FORMAT(IX,E20.12,110)
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6015 FORMAT(IX,/,7H STD =,G12.5//)
RETURN
END

C
C

FUNCTION FISHER(NFRE1,NFRE2,VAR1,VAR2,NAPROX)
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c
C THIS CALCULATES EQN(13) USING THE METHOD OF ALGORITHM
C 322 FOR DEGREES OF FREEDOM LESS THAN 500 AND
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IMPLICIT DOUBLE PRECISION (A-H,P-Z)
DATA PINV/0.3183098862/
DATA RT2INV/0.70716781187/
GO TO (10,100),NAPROX 

10 M=NFRE1 
N=NFRE2
FISH=VAR2/VAR1 
MA=2*(M/2)-M+2 
NB=2 * (N/2)-N+2 
W=FISH*FLOAT(M)/FLOAT(N)
Z=l/(1+W)
IF (MA.NE.1) GO TO 22 
IF (NB.NE.l) GO TO 12 
P=SQRT(W)
D=PINV*Z/P 
P=2*PINV*ATAN(P)
GO TO 40 

12 P=SQRT(W*Z)
D=0.5*P*Z/W 
GO TO 40 

22 IF (NB.NE.l) GO TO 30 
P=SQRT(Z)
D=0.5*Z*P 
P=l-P 
GO TO 40 

30 D=Z*Z 
P=W*Z 

40 Y=2*W/Z
JJ=NB+2
IF (MA.NE.1) GO TO 51 
DO 50 J=JJ,N ,2
D=(1+FLOAT(MA)/FLOAT(J-2))*D*Z 
P=P+(D * Y/FLOAT(J-1))

50 CONTINUE 
GO TO 52

51 ZK=Z**(FLOAT((N-l)/2))
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D=D*ZK*FLOAT(N/NB)
P=P*ZK+W*Z*(ZK-1)/ (Z-l)

52 Y=W*Z 
Z=2 / Z 
NB=N-2 
II=MA+2
DO 60 1=11,M,2 
J=I+NB
D=Y*D*FLOAT(J)/FLOAT(1-2)
P=P-Z*D/FLOAT(J)

60 CONTINUE 
FISHER=P 
RETURN

100 XNUM=ABS(SQRT(VAR1)-SQRT(VAR2))
XDEN=SQRT(VAR1/(2 * FLOAT(NFRE1))+VAR2/(2*FLOAT(NFRE2))) 
Z=XNUM/XDEN
FISHER=0.5*ERFCC(-RT2INV*Z)
RETURN
END

C
C

FUNCTION ERFCC(X)
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c 
c
C THIS FUNCTION CALCULATES THE VALUE OF THE ERROR
C FUNCTION. IT IS USED WHILE CALCULATING THE VALUE OF
C THE INTEGRAL.
C

IMPLICIT DOUBLE PRECISION (A-H,P-Z)
Z=ABS(X)
T=l/(1+0.5*Z)
ERFCC=T*EXP(-Z*Z-1.2 655122 3+T*(1.00002 3 68+T*(
* 0. 3 74 09196+T*(0.09678418+T*(-0.18628806+T*(
* 0.27886807+T*(-1.1352 0398+T*(1.48851587+T*(
* -0.8221522 3+T*0.17087277)))))))))
IF (X.LT.0) ERFCC=2-ERFCC
RETURN
END

C
C

FUNCTION MINST(STUDT)
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c
C THIS CALCULATES THE TERM WITH MIN STUDENT-T VALUE 
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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IMPLICIT DOUBLE PRECISION (A-H,P-Z)
COMMON/CHECK/A A (604,604),KIR(604)
COMMON/DAT/MOBS,NCO,NMAX,NCON 
DIMENSION STUDT(600)
STMIN=1E50 
DO 10 1=1,NCO

IF (KIR(I).NE.l) GOTO 10 
IF (STUDT(I).LT.STMIN) GOTO 11 
GO TO 10 

11 STMIN=STUDT(I)
IMIN=I 

10 CONTINUE
MINST=IMIN
RETURN
END

C
C

DOUBLE PRECISION FUNCTION QSWAP(NIN,NOUT)C***********************************************************
c 
c
C THIS CALCULATES THE Q-VALUE FOUND FOR A PROPOSED
C EXCHANGE OF THE TERM NIN WITH NOUT
C

IMPLICIT DOUBLE PRECISION (A-H,P-Z)
COMMON/CHECK/AA(604,604),KIR(604)
COMMON/DAT/MOBS,NCO,NMAX,NCON 

BMAX=AA(NMAX,NMAX)-(AA(NIN,NMAX)*AA(NMAX,NIN)/AA(NIN,NIN)) 
BI=AA(NOUT,NMAX)-(AA(NIN,NMAX)*AA(NOUT,NIN)/AA(NIN,NIN)) 
DI=AA(NOUT,NOUT)- (AA(NIN,NOUT)*AA(NOUT,NIN)/AA(NIN,NIN)) 
QSWAP=BMAX-(BI*BI)/DI 
RETURN 
END

C
C

SUBROUTINE STATS(VAR1,VAR2,SDCO,STUDT,PROB,NOCIN) C***********************************************************
c 
c
C STD=STANDARD DEVIATION FO EQN (EQN 10)
C SDCO(I)=STANDARD DEV OF COEEFF COEFF(I) EQN. (7)
C STUDT(I)=STUDENT-T-VALUE (EQN 8) NEEDED FOR CALCULATING
C THE PROB PROB(I)
CC***********************************************************

IMPLICIT DOUBLE PRECISION (A-H,P-Z)
COMMON/CHECK/AA(604,604),KIR(604)
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COMMON/COE/COEF(600)
COMMON/DAT/MOBS,NCO,NMAX,NCON 
COMMON/FISH/X (5 0,2) ZNUM

C
C THIS CALCULATES THE COEFFICIENTS AND THE STATISTICAL 
C QUANTITIES NEEDED FOR DETERMINING THE SIGNIFICANCE OF
C EACH TERM AND OF THE EQUATION AS A WHOLE
C

DIMENSION SDCO(600),STUDT(600),PROB(600) 
DIV=MOBS-NCON-NOCIN
STD=DSQRT(DABS(AA(NMAX,NMAX))/DBLE(DIV))
VAR1=STD*STD 
WRITE(6,60) STD 
WRITE(6,61)
DO 1 1=1,50 
DO 1 J=1,2 

1 X(I,J)=0
NUM=1
DO 10 1=1,NCO
IF (KIR(I).NE.l) GO TO 10
SDCO(I)=DBLE(STD)*DSQRT(DABS(AA(1,1)))
COEF(I)=AA(I,NMAX)
STUDT(I)=ABS(COEF(I)/SDCO(I))
TFRE=STUDT(I)
NFRE=(MOBS-NCON-NOCIN)
PROB(I)=STUDEP(NFRE,TFRE)
X(NUM,1)=1 
X (NUM,2)=STUDT(I)
NUM=NUM+1
WRITE(6,62)1,SDCO(I),COEF(I),STUDT(I),PROB(I)

60 FORMAT(IX,7HSTD = ,E12.6)
61 FORMAT(10X,4HSDCO,9X,4HCOEF,6X,5HSTUDT,8X,4HPROB)
62 FORMAT(IX,15,4E12.5)
10 CONTINUE

NUM=NUM-1 
C CALL SORT()

MST=MINST(STUDT)
VAR2=(AA(NMAX,NMAX)-(AA(MST,NMAX)*AA(NMAX,MST)/AA(MST,MST))) 
/ + DBLE(DIV+1.0)

RETURN
END

C
C

FUNCTION STUDEP(NFRE,TFRE) 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c
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C
C THIS CALCULATES THE STUDENT-T PROB. FOR
C EQN(9) USING ALGORITHM AS3 B
CC*********************************************************** 

IMPLICIT DOUBLE PRECISION (A-H,P-Z)
DATA PINV/0.3183098862/
N=NFRE
T=TFRE
IF (N .GT.50.AND.TFRE.GT.6) GOTO 50 
FN=N
IOE=N-2*(N/2)
IN2=N-2 
A=T/SQRT(FN)
B=FN/(FN+T**2)
S=1
C=1
KS=2+IOE
FK=KS
IF (IN2-2) 6,7,7

7 DO 8 K=KS,IN2,2 
C=C*B*(FK-1)/FK 
S=S+C

8 FK=FK+2
6 IF (IOE) 1,1,2
1 STUDEP=A* SQRT(B)* S 

RETURN
2 IF (N-l)4,4,5
4 S=0
5 STUDEP=2 * (A*B*S+ATAN(A))*PINV 

RETURN
50 STUDEP=1

RETURN 
END

C
C

SUBROUTINE TRADD(MINQ) C*********************************************************** 
C
C THIS TRANSFORMS THE MATRIX AA BY ADDING A NEW TERM
C MINQ TO THE EQUATION
C
C*********************************************************** 

IMPLICIT DOUBLE PRECISION (A-H,P-Z)
COMMON/CHECK/AA(604,604),KIR(604)
COMMON/DAT/MOBS,NCO,NMAX,NCON 
DIMENSION AQJ(604),AIQ(604)
IQMIN=MINQ
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DO 5 1=1,NMAX
5 AIQ(I)=AA(I,IQMIN)

DO 6 J=1,NMAX
6 AQJ(J)=AA(IQMIN,J)

DO 10 1=1,NMAX
DO 11 J=1,NMAX 
IF (I.EQ.IQMIN) GO TO 20 
IF (J.EQ.IQMIN) GO TO 3 0 
IF (KIR(J).EQ.1) GO TO 31
A A (I,J)=AA(I,J )-(AQJ(J )*AIQ(I)/AIQ(IQMIN))
GO TO 11

30 A A (I,J)=-(AIQ(I)/AIQ(IQMIN))
GO TO 11

31 A A (I,J)=AA(I ,J)-(AQJ(J)*AIQ(I)/AIQ(IQMIN))
GO TO 11

20 IF (J.EQ.IQMIN) GO TO 21 
IF (KIR(J).EQ.1) GO TO 22 
A A (I,J)=AQJ(J)/AIQ(IQMIN)
GO TO 11

21 AA(I,J)=1.0/AIQ(IQMIN)
GO TO 11

22 A A (I,J)=AQJ(J )/AIQ(IQMIN)
11 CONTINUE
10 CONTINUE

WRITE(6,60) IQMIN,A A (NMAX,NMAX)
60 FORMAT(IX,8HTHE TERM ,15,30HHAS BEEN ADDED TO THE 

EQUATION
+ ,/, 16HSUM OF SQUARES=,D20.8)
RETURN
END

C
C

SUBROUTINE TRELIM(MINQ)
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c
C THIS SUBROUTINE TRANSFORMS THE MATRIX AA BY ELIMINATING
C THE TERM MINQ FROM THE EQUATION
C
Ç * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IMPLICIT DOUBLE PRECISION (A-H,P-Z)
COMMON/CHECK/AA(604,604),KIR(604)
COMMON/DAT/MOBS,NCO,NMAX,NCON 
DIMENSION AQJ(604),AIQ(604)
IQMIN=MINQ 
DO 5 1=1,NMAX

5 AIQ(I)=AA(I,IQMIN)
DO 6 J=1,NMAX

6 AQJ(J)=AA(IQMIN,J)
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DO 10 1=1,NMAX 
DO 11 J=1,NMAX 
IF (I.EQ.IQMIN) GO TO 20 
IF (J.EQ.IQMIN) GO TO 30 
IF (KIR(J).NE.l) GO TO 31
A A (I ,J )=AA(I ,J )-(AQJ(J )*AIQ(I)/AIQ(IQMIN))
GO TO 11

3 0 A A (I,J)=-(AIQ(I)/AIQ(IQMIN))
GO TO 11

31 A A (I,J )=AA(I,J)-(AQJ(J )*AIQ(I)/AIQ(IQMIN))
GO TO 11

20 IF (J.EQ.IQMIN) GO TO 21 
IF (KIR(J).NE.l) GO TO 22 
A A (I ,J )=AQJ(J)/AIQ(IQMIN)
GO TO 11

21 A A (I,J)=1/AIQ(IQMIN)
GO TO 11

22 A A (I,J)=AQJ(J )/AIQ(IQMIN)
11 CONTINUE
10 CONTINUE

WRITE(6,60) IQMIN,A A (NMAX,NMAX)
60 FORMAT(IX,8HTHE TERM,15,37HHAS BEEN ELIMINATED FROM THE 

EQN
+ ,/, 16HSUM OF SQUARES =,D20.8)
RETURN
END

C
C

SUBROUTINE SORT()
IMPLICIT DOUBLE PRECISION (A-H,P-Z)
COMMON/FISH/X(50,2),NUM 
LAST=NUM 
DO 2 0 J=l,NUM-1 
NTR=J 
IRST=J+1

DO 5 K=IRST,LAST 
IF (X (K ,2).LT.X (NTR,2)) NTR=K 

5 CONTINUE
HOLD=X(J ,2)
H0LD1=X(J ,1)
X (J ,2)= X(NTR,2)
X (J ,1)=X(NTR,1)
X (NTR,2)=HOLD 
X(NTR,1)=H0LD1 

20 CONTINUE 
RETURN 
END

C
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C
C
C

SUBROUTINE FIT(RES,WGT) C***********************************************************
c
C THIS SUBROUTINE BUILDS THE REGRESSION MATRIX 
C
C*********************************************************** 

IMPLICIT DOUBLE PRECISION (A-H,P-Z)
COMMON/TERM/FACT(600)
COMMON/CHECK/AA(604,604),KIR(604)
COMMON/DAT/MOBS,NCO,NMAX,NCON 
COMMON/PROBLEM/NCONT 
IF (NCONT.GT.0) GOTO 2 0 
DO 22 1=1,NCO 
DO 24 J=1,NCO 

24 A A (I,J)=AA(I ,J)+FACT(I)*FACT(J)
22 A A (I ,NMAX)=AA(I,NMAX)+RES*FACT(I)

A A (NMAX,NMAX)=AA(NMAX,NMAX)+RES*RES 
RETURN 

20 DO 4 0 1=1,NCO 
40 A A (I,NCO+NCONT)=FACT(I)

A A (NCO+NCONT,NMAX)=RES
RETURN
END

C
C
C

SUBROUTINE FITSAT(FDSL,FDSV,FPS)C***********************************************************
c
C THIS SUBROUTINE FITS THE SATURATION BOUNDARY
CC***********************************************************

IMPLICIT DOUBLE PRECISION (A-H,P-Z)
PARAMETER (MSAT = 150)
COMMON/DAT/MOBS,NCO,NMAX,NCON

C
COMMON /SATD/ NSAT, WSL(MSAT), WSV(MSAT), TS(MSAT),

PS(MSAT),
* DSL(MSAT), DSV(MSAT)

C
COMMON /REFDAT/ ZC, G (50), GAMMA, PTRP, DTRP, TTRP
* , CMW

C
COMMON /DERIV/ DPSDT, DDSDT

C
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COMMON /TERM/FACT(600)
C

COMMON/CONST/TC,PC,DC,R
C

DIMENSION F (600)
C

DATA EPS / 1.0E-12 /
C

DO 2 90 J =1, NSAT
SATURATED LIQUID DENSITY FIT

PP = PSATF(TS(J))
SIGP = 0.001 * PS(J)
SIGD = 0.001 * DSL(J) * DPSDT / DDSDT
SIGT = 0.002 * DPSDT
WSL(J) = FDSL / SQRT(SIGP**2 + SIGD**2 + SIGT**2)
WSL(J) = FDSL
if (ts(j).gt.358) wsl(j) = 2*wsl(j)
PSAT = PS(J) + EPS 
CALL PRESSB(TS(J),PK,DSL(J),0)
RES=PS(J)-R*DSL(J)*TS(J)

DO 11 IJ=1,NCO
FACT(IJ)=FACT(IJ)*WSL(J)

CONTINUE 
RES = RES*WSL(J)
CALL FIT(RES,WSL(J))

SATURATED VAPOR DENSITY
PSAT = PSAT - 2.0 * EPS 
SIGD = 0.001 * DSV(J) * DPSDT / DDSDT 
WSV(J)=FDSV
IF(WSV(J).LT.2.0) WSV(J) = 2.0 
IF(J .GT.12) WSV(J) = WSV(12)
CALL PRESSE(TS(J),PK,DSV(J),0)
RES=PS(J)-R*DSV(J)*TS(J)
DO 12 IJ=1/NCO 
FACT(IJ)=FACT(IJ)*WSV(J)
CONTINUE 
RES = RES*WSV(J)
CALL FIT(RES,WSV(J))

GIBBS CONSTRAINT DATA
WGIBB = FPS
IF (TS(J).GT.368.) WGIBB=2*WGIBB 
CALL AR(PP,DSL(J),TS(J),0)
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DO 270 K = 1, NCO 
270 F (K) = FACT(K)

CALL AR(PP,DSV(J),TS(J),0)
DO 280 K = 1, NCO 

280 FACT(K) = (FACT(K)-F(K))
RES=PS(J) * (1./DSL(J)-1./DSV(J))
* + (LOG(DSL(J)/DSV(J)))*R*TS(J)
DO 13 IJ=1,NCO 
FACT(IJ)=FACT(IJ)*WGIBB 

13 CONTINUE
RES = RES*WGIBB 
CALL FIT(RES,WGIBB)

290 CONTINUE
MOB S =MOB S +N SAT
return
END

C
SUBROUTINE FITCP(FCP)

Ç * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c
C THIS SUBROUTINE FITS THE CP DATA
CC***********************************************************

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (MCP = 100)
PARAMETER (NC =32, NF = NC + 1 )

C
COMMON /CPTP/ NCP, IDCP(MCP), WCP(MCP), TCP(MCP),
PCP(MCP), DCP(MCP), CP(MCP)
COMMON /FITCOM/ A (600)

C COMMON /REFDAT/ R, PC, DC, TC, ZC, G(NC), GAMMA,
PTRP, DTRP, TTRP 

C * , CMW
COMMON /TERM/FACT(600)
COMMON/CONST/TC,PC,DC,R 
COMMON/DAT/MOBS,NCO,NMAX,NCON 
DIMENSION F (600)

C
IF (NCP.EQ.O) GO TO 120 
DO 100 1 = 1 ,  NCP

C
C CALCULATE THE DENSITY OF THE CP POINT
C

020 DCP(I) = RHOF(PCP(I),0.0D0,TCP(I))
C
C FORM THE DERIVATIVE DS/DT AT CONSTANT P
C

ARTHUR LAKES LIBRARY 
COLORADO SCHOOL OF MINE 
GOLDEN, CO 80401
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C CALL DPDD(DPD,DCP(I),TCP(I),2)
C CALL DPDT(DPT,DCP(I),TCP(I),2)
C DPT = DPT / DCP(I)
C TERM = 100.0 * TCP(I) * DPT * DPT / DPD

CALL NONLIN(PCP(I),DCP(I),TCP(I),CPNL)
TERM=CPNL*100
CALL IDEAL(TCP(I)^VO,SO)
RES = 0.01 * (CP(I) - CVO - TERM)

CALL CVR(PP,DCP(I),TCP(I),0)
DO 050 J =1, NCO 

050 F (J) = FACT(J)
CALL CVR(PP,0.0D0,TCP(I),0)

DO 060 J= 1, NCO 
060 FACT(J) = FACT(J ) - F(J)

TR = TCP(I) / TC
DR = DCP(I) / DC 
SIGC = 0.02 * CP(I)
SIGD = 0.001 * TCP(I) * DP2 / DCP(I)
SIGT = 0.5 * CP(I) / TCP(I)
WCP(I) = 25.0 * FCP / SQRT(SIGC**4 + SIGD**2 +
SIGT**2) / TR**2
IF(ABS(TR-1.0).LT.0.025 .AND. ABS(DR-1.0).LT.0.1)

* WCP(I) = 0.0 
IF (IDCP(I).GT.O) GO TO 070 
IDCP(I) = -IDCP(I)
WCP(I) = 0.0 

070 CALL FIT(RES,WCP(I))
IF (WCP(I).GT.O) MOBS=MOBS+l 

100 CONTINUE 
12 0 RETURN 

END
C
C
c

SUBROUTINE CPCOMPC***********************************************************
c
C THIS SUBROUTINE DOES THE CP COMPARISONS.
CC***********************************************************

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (MCP = 100)

C
COMMON /CPTP/ NCP, IDCP(MCP), WCP(MCP), TCP(MCP),
PCP(MCP), DCP(MCP), CP(MCP)

C
WRITE(3,200)
AAD — 0.0
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BIAS = 0.0 
RMS = 0.0 
NI = 0
DO 100 1 = 1 ,  NCP 
D = RHOF(PCP(I),0.0D0,TCP(I))
CVCAL = CVF(D,TCP(I))
CALL DPDT(PI,D ,TCP(I),1)
CALL DPDD(P2,D,TCP(I),1)
CPCAL = CVCAL + 100.0 * TCP(I) * PI * PI / (D * D *
P2 )
PCT = -100.0 * (CPCAL - CP(I)) / CP(I)
WRITE(3,22 0) IDCP(I), TCP(I), PCP(I), CPCAL, CP(I), 
PCT, WCP(I)

C IF (WCP(I).LE.O.O) GO TO 100
NT = NT + 1 
AAD = AAD + ABS(PCT)
BIAS = BIAS + PCT 
RMS = RMS + PCT * PCT 

100 CONTINUE
AAD = AAD / NI
BIAS = BIAS / NI
RMS = SQRT(RMS/NI-BIAS*BIAS)
WRITE(3,240) NI, AAD, BIAS, RMS 

200 FORMAT(Z1CP(P,T) COMPARISONS'/
I'O ID T,K P ,BAR CP,CALC CP,EXP CP,%
WT')

220 FORMAT(15,F9.3,F9.4,2F9.3,F8.3,F8.2)
240 FORMAT('ON = ',16,' AAD = ',F7.3,' BIAS = ',F7.3,' 

RMS =',F7.3)
RETURN
END

C
FUNCTION PSATF(T)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

C
Ç * * * * * * * * *  * * * * * * * * * * * * * * * * * * * *
c 
c
C PURPOSE --- THIS ROUTINE CALCULATES THE SATURATION
C PRESSURE AND ITS DERIVATIVE WITH RESPECT TO T, GIVEN T.
C
C
C CODED BY— J. F. ELY
C CHEMICAL ENGINEERING SCIENCE DIVISION 773.20
C NATIONAL BUREAU OF STANDARDS
C BOULDER, COLORADO 80303
C
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C
C VERSION 1.0 —  R134A 11/17/89
C
CC * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C
c

DIMENSION G (6)
COMMON /DERIV/ DPSDT, DDSDT 

C DATA TC, EPP, G / 374.255D0, 1.90D0,
0.449274293643D+00,

C * 0.856704281132D+01,-0.7 63187819745D+01,
0.116786832983D+02,

C * -0.148122815240D+02, 0.590114977172D+01/
C DATA TC, EPP, G / 374.255D0, 1.9 0D0,

0.372921742638D+02,
.2 349408944190+02,-0.1717195318 31D+02,
-0.2 24 2973 623 53D+02,

C * 0.465208401919D+02,-0.267091331530D+02/
DATA TC, EPP, G /374.255D0, 1.90D0,
0.13 666083083 0D+02,

* 0.13 07060993 32D+02,-0.110674 3 64581D+02,
0.2 314 6704 0853D+01,

* 0.403 6534 37325D+01,-0.4 6509392847 6D+01/
X = T / TC
IF (X .GT.1.0) GO TO 010
PCAL = G (1)*(1.0-X)**EPP + G (2) + G(3)/X + G(4)*X +
G (5)*X**2
PCAL = EXP(PCAL + G(6)*X**3)
DPSDT=PCAL*(-EPP*G(1)*(1.0-X)**(EPP-1.0) - G (3)/(X*X)
* + G (4) + 2.0*G(5)*X + 3.0*X*X*G(6))/ TC 
PSATF = PCAL
RETURN 

010 PSATF = 26.55 
DPSDT = 100.0 
RETURN 
END
FUNCTION DSATL(T)
IMPLICIT DOUBLE PRECISION (A-H,0-Z) 

ç * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C
C PURPOSE   THIS ROUTINE CALCULATES THE SATURATED
C LIQUID DENSITY OF R134a
C
C 11/17/89 —  JFE
CC * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C
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DIMENSION G (4)
C

COMMON /DERIV/ DPSDT, DDSDT
C

DATA DC / 5.0167D0 /
DATA TC, BETA, G / 374.255D0, 0.35D0,
0.211351877568D+01,

* -0.355571666597D+00,-0.79572622 9378D+00,
0.78 02893 60803D+00/

C
IF (T.GT.TC) GO TO 010 
X = 1.0 - T/TC
DENOM = 1.0 + G(2) * X**(1.0-BETA)
Y = (G(1) * X**BETA + G (3) * X * X + G(4) * X*X*X) / 
DENOM
DYDX = BETA*G(1)*X**(BETA-1.0) + 2.0*G(3)*X +
3.0*G(4)*X*X
DYDX = (DYDX - Y * G(2) * (1.0-BETA)/ X**BETA) / DENOM

C
DSATL = DC * (Y + 1.0)
DDSDT = - DC * DYDX / TC 
RETURN 

010 DSATL = DC 
DDSDT = 100.
RETURN
END
FUNCTION DSATV(T)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

CC * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C
c
C PURPOSE ---  THIS ROUTINE CALCULATES THE SATURATED
C VAPOR DENSITY OF R134A
C
C 9/02/85 - JFE
CC * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C
c

DIMENSION G (4)
C

LOGICAL ENTER
C

COMMON /DERIV/ DPSDT, DDSDT

DATA DC / 5.0167D0 /, R / 0.0831441D0 /
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C DATA TC, BETA, G / 374.255D0, 0.35D0,
0.312 475706814D+02,

C * -0.103250297 083D+03,
0.116419951787D+03,-0.452587571181D+02/

C DATA TC, BETA, G / 374.25500, 0.3500,
0.2985963449150+02,

C * -0.9788914463 640+02,
0.10967574023 60+03,-0.4247 60053 87 60+02/
DATA TC, BETA, G / 374.25500, 0.3500,
0.2892 6694773 60+02,

* -0.9457692158430+02,
0.1057921614550+03,-0.4097375770990+02/
DATA ENTER / .FALSE. /

C
IF (ENTER) GO TO 010 
ENTER = .TRUE.
PC = PSATF(TC)
ZC = PC / (R*DC*TC)

C
010 TR = T / TC

IF (TR.GT.1.0) GO TO 020 
TAUB = (1.0 - TR)**BETA
TRM = G (1) + TR * (G(2) + TR * (G(3) + TR * G(4)))
PS = PSATF(T)
PR = PS / PC
FX = 1.0 + TAUB * TRM
Z = 1.0 + (ZC-1.0) * PR * FX / TR
DSATV = PS / (R * T * Z)

C
TRMP = G(2) + TR * (2.0*G(3) + 3.0*G(4)*TR)
DFDX = TAUB * (TRMP - BETA * TRM / (1.0 - TR))
DZDX = ((TC * DPSDT / PC) - PR / TR) * FX 
DZDX = (ZC-1.0) * (DZDX + PR*DFDX) / TR 
DDSDT = (DPSDT/PS - 1.0/T - DZDX/(Z*TC)) * DSATV 
RETURN 

020 DSATV = DC 
DDSDT = 100.
RETURN
END

C
SUBROUTINE DREAD(JPVT,JCV,JCP,JDP,USAT,JVIR,JWS,JPT)C***********************************************************

THIS SUBROUTINE READS IN THE DATA FILE FOR R134A. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (NC =32, NF = NC + 1 )
PARAMETER (MPVT = 2000, MVIR = 100, MSAT = 150, MCV = 

200)
PARAMETER (MDPD = 500, MDPT = 001, MWSP = 450, MCP = 
100)

C
COMMON /PVTD/ NPVT, ID(MPVT), WT(MPVT), T(MPVT),
P(MPVT),
* D(MPVT)

C
COMMON /CVDAT/ NCV, IDCV(MCV), WCV(MCV), TCV(MCV), 
PCV(MCV),
* DCV(MCV), CV(MCV)

c
COMMON /CPTP/ NCP, IDCP(MCP), WCP(MCP), TCP(MCP),
PCP(MCP),

1 DCP(MCP), CP(MCP)
C

COMMON /DPDAT/ NDP, IDP(MDPD), WDP(MDPD), TDP(MDPD), 
DDP(MDPD),

1 DPDX(MDPD)
C

COMMON /DPTDAT/ NPT, IDPT(MDPT), WDPT(MDPT),
TPT(MDPT), DPT(MDPT),

* DPDTX(MDPT)
C

COMMON /SATD/ NSAT, WSL(MSAT), WSV(MSAT), TS(MSAT),
PS(MSAT),

* DSL(MSAT), DSV(MSAT)
C

COMMON /VIRIAL/ NVIR, IDV(MVIR), WV(MVIR), TV(MVIR), 
BV(MVIR)

C
COMMON /SOUND/ NWS, IDWS(MWSP), TWS(MWSP), PWS(MWSP), 
WSPT(MWSP)

C
COMMON/CONST/TC,PC,DC,R
COMMON /REFDAT/ZC,PTRP, DTRP, TTRP, CMW

C
COMMON /REFN/ NREF, IDREF(IOO)
COMMON /REFS/ REFER(100)

C
CHARACTER*4 NTYPE(9), ITYPE, REFER*80, RECORD*72

C
DATA NTYPE / 'PVTD', 'CVTD', 'CSLD', 'CPTP', 'DPDD',
'BVIR',

* 'WSPT', 'WSAT', 'DPDT'/
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NPVT = 0 
NCV = 0 
NCP = 0 
NDP = 0 
NVIR = 0 
NSAT = 0 
NWS = 0 
NPT = 0 
NREF = 0 
NP=0

020 READ (1,z(A4,I4,A)') ITYPE, IDENT, RECORD 
IF (ITYPE.EQ.'EOF') GO TO 1000 
IF (ITYPE.EQ.'REM') GO TO 020 
IF (ITYPE.NE.'REF ') THEN

READ (RECORD,1100) TK, PROP1, PROP2, PROP3 
DO 040 J = 1, 9 
IF (ITYPE.EQ.NTYPE(J))

* G O T O  (100,200,3 00,4 00,500,600,700,800,900),J 
040 CONTINUE 

GO TO 020 
ELSE

NREF = NREF + 1 
REFER(NREF) = RECORD 
IDREF(NREF) = IDENT 
GO TO 020 

ENDIF
PVT DATA

ELIMINATE DATA INSIDE 2-PHASE REGION
100 CONTINUE 

NP=NP+1
IF (TK.GE.TC) GO TO 110 
DL = DSATL(TK)
DV = DSATV(TK)
SP = PSATF(TK)
IF (PROPI.GT.SP .AND. PROP2.LT.DL) GO TO 020 
IF (PROPI.LT.SP .AND. PROP2.GT.DV) GO TO 020 

110 CONTINUE
NPVT = NPVT + 1 
ID(NPVT) = IDENT 
T(NPVT) = TK 
P(NPVT) = PROP1 
D(NPVT) = PROP2 

C READ(25,*)WT(NPVT)
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C
200

C
300

C
400

C
500

C
600

C
700

GO TO 02 0
CV DATA

NCV = NCV + 1 
IDCV(NCV) = IDENT 
TGV(NCV) = TK 
PCV(NCV) = PROP1 
DCV(NCV) = PROP2 
CV(NCV) = PROP3
IF (PROPI.LE.0.0) CALL PRESSE(PCV(NCV),PROP2,TK/l) 
WCV(NCV) = 0.0 

DCV(NCV) = RHOF(PCV(NCV),PROP2,TGV(NCV))
GO TO 020

C(SAT) DATA
NCV = NCV + 1 
IDCV(NCV) = IDENT 
TGV(NCV) = TK 
DCV(NCV) = DSATL(TK)
CV(NCV) = -PROP1 
WCV(NCV) = 0.0 
GO TO 020

CP DATA
NCP = NCP + 1 
IDCP(NCP) = IDENT 
TCP(NCP) = TK 
PCP(NCP) = PROP1 
CP(NCP) = PROP2 
WCP(NCP) = 0.0 
GO TO 020

DPDD DATA
NDP = NDP + 1 
IDP(NDP) = IDENT 
TDP(NDP) = TK 
DDP(NDP) = PROP1 
DPDX(NDP) = PROP2 
GO TO 020

SECOND VIRIAL COEFFICIENTS
NVIR = NVIR + 1 
IDV(NVIR) = IDENT 
TV(NVIR) = TK 
BV(NVIR) = PROP1 
GO TO 020

SOUND VELOCITY
NWS = NWS + 1 
IDWS(NWS) = IDENT 
TWS(NWS) = TK 
PWS(NWS) = PROP1 
WSPT(NWS) = PROP2 
GO TO 020
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C
8 00 NWS = NWS + 1

IDWS(NWS) = IDENT 
TWS(NWS) = TK 
WSPT(NWS) = - PROP1 
GO TO 020 

C DPDT DATA
900 NPT = NPT + 1

IDPT(NPT) = IDENT 
TPT(NPT) = TK 
DPT(NPT) = PROP1 
DPDTX(NPT) = PROP2 
WDPT(NPT) = 0.0 
GO TO 020

C SATURATION BOUNDARY
1000 ITRP = TTRP 

ITCR = TC
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c
C R134A
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c
C DO 1001 I = 100, 160, 20
C TSAT = I
C NSAT = NSAT + 1
C PS(NSAT) = PSATF(TSAT)
C DSL(NSAT) = DSATL(TSAT)
C DSV(NSAT) = DSATV(TSAT)
C TS(NSAT) = TSAT
C WSL(NSAT) = 0.0
C WSV(NSAT) = 0.0
C1001 CONTINUE 
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * *
c
C DO 1010 I = ITRP, ITCR, 4

DO 1010 I = ITRP, ITCR, 2 
TSAT = I 
NSAT = NSAT + 1 
PS(NSAT) = PSATF(TSAT)
DSL(NSAT) = DSATL(TSAT)
DSV(NSAT) = DSATV(TSAT)
TS(NSAT) = TSAT 

C READ(25,*)WSL(NSAT),WSV(NSAT)
1010 CONTINUE

C



0
0
0
*
0
 

no
on

 
o 

oo
o

T-4456 185

IF NO SATURATION DATA, SET NSAT = 0
NSAT=0
JPVT = NPVT 
JCV = NCV 
JCP = NCP 
JDP = NDP 
JSAT = NSAT 
JVIR = NVIR 
JWS = NWS 
JPT = NPT

1100 FORMAT(4F10.0)
RETURN
END

SUBROUTINE FITPVT(FPVT) *********************************************************** 
* * * * * * * * * * * * * * * * * *

THIS SUBROUTINE FITS THE PVT DATA
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *

IMPLICIT DOUBLE PRECISION (A-H,P-Z)
COMMON /PVTD/
NPVT,ID(2000),W T (2000),T(2000),P(2000),D(2000)
COMMON/TERM/FACT(600)
COMMON/DAT/MOBS,NCO,NMAX,NCON 
COMMON/CONST/TC,PC,DC, R 
DIMENSION PCAL(2 000)
DO 2 0 NP=1,NPVT 

C READ(25,*)W T (NP)
CALL WEIGHT(D(NP),T(NP),DPD0,DPT0)
SIGP=0.001*P(NP)
SIGT=0.002*DPT0 
SIGD=0.001*D(NP)*DPD0
WT(NP)=FPVT/(SIGP**2+SIGT**2+SIGD**2)**0.5 
IF (D(NP).GT.2.0.AND.D (NP).LT.10.0)
WT(NP)=2.0*WT(NP)
IF (ID(NP).LT.O) WT(NP)=0 
IF (WT(NP).GT.O) MOBS = MOBS+1 

RES=P(NP)- (R*D(NP)*T(NP))
CALL PRESSE(T(NP),PCAL(NP),D(NP),0)

C IF (D (NP).GT.1.0.AND.D (NP).LT.8.0)
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WT(NP)=WT(NP)*FPVT 
C IF (P (NP).GT.0.5.AND.D (NP).LT.6.0)

WT(NP)=WT(NP)*FPVT 
C IF (D(NP).GT.0.5.AND.ID(NP).EQ.7)

WT(NP)=WT(NP)*FPVT 
DO 10 1=1,NCO 
FACT(I)=FACT(I)*WT(NP)

10 CONTINUE
RES=RES*WT(NP)
CALL FIT(RES,WT(NP))

20 CONTINUE 
RETURN 
END

SUBROUTINE SATF(TS,PS,DSL,DSV)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (NC =32, NF = NC + 1, NB = 5)

C * * * * * * * * * * * * * * * * * * * * * * * * * * 
C
c
C PURPOSE --- THIS ROUTINE CALCULATES THE SATURATION
C PRESSURE AND COEXISTING DENSITIES FROM
C AN EQUATION OF STATE.
C
C VERSION 2.0 5/20/82
C
C CODED BY —  J. F. ELY
C THERMOPHY51CAL PROPERTIES DIVISION
C NATIONAL BUREAU OF STANDARDS
C BOULDER, COLORADO 80303
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * *
C
C COMMON /REFDAT/ R, PC, DC, TC, ZC, A(NC), GAMMA,
C PTRP, DTRP, TTRP
C , CMW
C

COMMON /REFDAT/ZC, PTRP, DTRP, TTRP,CMW 
COMMON/CONST/TC,PC,DC,R 
LOGICAL ENTER
DATA TOL, FTOL, ENTER / 1.0E-4, 1.0E-6, .FALSE. /

C
ZC = PC / (R * TC * DC)
IF(TS.LT.TC) GO TO 005
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PS = PC 
DSL = DC 
DSV = DC 
RETURN

C
005 IF (ENTER) GO TO 010 

ENTER = .TRUE.
BV = LOG(PTRP/PC) / (1.0/TTRP - 1.0/TC)
AV = LOG(PC) - BV / TC

INITIAL GUESS AT THE VAPOR PRESSURE
010 PS = EXP(AV+BV/TS)

INITAL GUESS AT THE VAPOR DENSITY
DV = PS / (R*TS)

INITIAL GUESS AT LIQUID DENSITY
TR = TS /TC
EPS = (1.0-TR)**(2.0/7.0)
DL = DC / ZC**EPS 
IF (DL.GT.DTRP) DL = DTRP

IMPROVE VAPOR GUESS NEAR CRITICAL
IF (TR.LT.0.85) GO TO 015 
DV = DL - 3.75 * DC * (1.0-TR)**0.333

NEWTON-RAPHSON ITERATION FOR DENSITIES
015 DO 100 3 - 1 ,  25
020 CALL PVTF(PL,DL,TS,DPDL,D2PDD2,GL)
030 IF (DPDL.GT.0.O.AND.PL.GT.0.0D0) GO TO 040 

DL = 1.02 * DL 
GO TO 020

040 CALL PVTF(PV,DV,TS,DPDV,D2PDD2,GV)
IF (DPDV.GT.0.0D0) GO TO 060 
DV = 0.98 * DV 
GO TO 040 

060 FI = GL -GV 
F2 = PL - PV 
F2L = DPDL 
F2V = - DPDV 
FIL = F2L / DL 
F1V = F2V / DV

C WRITE(6,300) J, DL, FIL, F2L, DV, F1V, F2V, FI, F2
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DENOM = FIL * F2V - F2L * F1V 
IF (ABS(DENOM).LE.1.0E-10) GO TO 120 
DDL = - (F1*F2V-F2*F1V) / DENOM
DDV = -(F1+DDL*F1L) / F1V 
DL = DL + DDL 
IF(DL.LT.DC) DL = DC 
DVS = DV 
DV = DV + DDV 
IF(DV.GT.DC) DV = DC 
IF(DV.LE.0.0D0) DV=DVS/2.0 

C WRITE(6,310) J, DDL, DDV, DENOM
IF (ABS(DDL/DL).LT.TOL .AND. ABS(DDV/DV).LE.TOL) GO TO 
110
FNORM = F1*F1 + F2*F2
IF(TR.LT.0.99 .AND. FNORM.LE.FTOL) GO TO 110 

100 CONTINUE 
110 PS = PV 

DSL = DL 
DSV = DV

C WRITE(6,330) TS, PV, DL, DV, FNORM, GL
RETURN 

120 WRITE(6,340) DENOM 
GO TO 110 

300 FORMAT(13,8G10.4)
310 FORMAT(I3,2F12.8,G13.6)
330 FORMAT(F8.2,G13.6,2F10.6,2G13 .6)
340 FORMAT('DENOM IS TOO SMALL',G13.6)

END
C
C

SUBROUTINE SATCMPC***********************************************************
C
c
C THIS SUBROUTINE PERFORMS COMPARISONS ALONG THE
C SATURATION BOUNDARY
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (MSAT = 150)
COMMON /SATD/ NSAT, WSL(MSAT), WSV(MSAT), TS(MSAT), 
SATP(MSAT,3)

C
DIMENSION AAD(3), BIAS(3), RMS(3), PCT(3), PCAL(3)

C
WRITE(3,200)
DO 010 K = 1, 3 
AAD(K) = 0.0
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BIAS(K) = 0.0 
010 RMS(K) = 0.0

DO 100 J = 1, NSAT
CALL SATF(TS(J),PCAL(1),PCAL(2),PCAL(3))
DO 040 K = 1, 3 
PCT(K) = PCAL(K) - SATP(J ,K)
PCT(K) = 100.0 * PCT(K) / SATP(J,K)

020 AAD(K) = AAD(K) + ABS(PCT(K))
BIAS(K) = BIAS(K) + PCT(K)
RMS(K) = RMS(K) + PCT(K) * PCT(K)

040 CONTINUE
WRITE(25,*)WSL(J),WSV(J)
WRITE(3,220)
T S(J),(PCAL(K),PCT(K),K=1,3),WSL(J),WSV(J)

100 CONTINUE
C

DO 120 K = 1, 3 
AAD(K) = AAD(K) / NSAT 
BIAS(K) = BIAS(K) / NSAT 

120 RMS(K) = SQRT(RMS(K)/NSAT-BIAS(K)*BIAS(K))
WRITE(3,240) NSAT, AAD, BIAS, RMS

C
200 FORMAT('1 T,K

DL,CAL
* % DV, CAL
WV')

C 220 FORMAT(9E13.5)
220 FORMAT(F13.3, F13.5 ,F13.2,2X, F13.5,F13.2,2X, F13.5

* F13.2,2D13.2)
C 220 FORMAT(D13.3, 1E13.5 ,D13.2,2X, D13.5,D13.2,2X,

1E13.5 ,
C * D13.2,2D13.2)

240 FORMAT('ONSAT =',14/'
AAD:',14X,F8.3,8X,F8.3,15X,F8.3/
*' BIAS:',14X,F8.3,8X,F8.3,15X,F8.3/Z 
RMS :',14X,F8.3,8X,F8.3 ,
*15X,F8.3)
RETURN
END

SUBROUTINE PVTF(PO,DO,TO,DPDO,DPDDO,GO) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

PURPOSE --- THIS ROUTINE CALCULATES THE PRESSURE, ITS

P , CAL
WL
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C DENSITY DERIVATIVE AND THE GIBBS ENERGY RELATIVE TO THE 
C IDEAL GAS AT UNIT PRESSURE OF SAUL-WAGNER 38 TERM WATER
C BWR EQUATION
C
C
C VERSION 1.1 —  8/10/92
C
C CODED BY —  J. F. ELY
C CHEMICAL ENGINEERING DEPARTMENT
C COLORADO SCHOOL OF MINES
C GOLDEN, COLORADO 80401
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/TERM/FACT(600)
COMMON/IDNO/PIDN(600,4)
COMMON/COE/COEF(600)
COMMON/CONST/TC,PC,DC,R 
COMMON/OLDAT/BCOEF(32),BD(32,4)
COMMON/DAT/MOBS,NCO,NMAX,NCON

C
T=TC/TO
D=DO/DC
SUM4=0
SUM5=0
SUM6=0
CALL PRESSE(TO,PO,DO,1)
CALL AR(PO,DO,TO,IDD)
DO 11 1=1,NCO 
IF (COEF(I).EQ.0) GOTO 11 
PIT=PIDN(1,2)
PID=PIDN(1,3)
PIDRO=PIDN(1,4)

CALL DIFF5(D,T,PIT,PID,PIDRO,DPD,DPDD,DPT) 
SUM4=SUM4+DPD*COEF(I)
SUM5=SUM5+DPDD*COEF(I )
SUM6=SUM6+FACT(I)*COEF(I)/(R*TO)

11 CONTINUE
ZO=PO/(DO*R*TO)
DPDO=(SUM5*R*TO+R*TO)
DPDDO=SUM2/DC**2 
GO=SUM6+LOG(DO*R*TO)+Z0-1 
GO=GO*R*TO 

RETURN
END

C
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C
SUBROUTINE D I F F 5 ( D , T , I , J , K , D I F F 1 , D I F F 2 , DPT)
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - Z )
D I F F 1 = ( D * * ( J - l ) * J * T * * I - D * * ( J + K - l ) * K * T * * I ) / E X P ( D * * K )
I F  ( K . E Q . O )  D I F F 1 = D I F F 1 * E X P ( D * * K )

D I F F 2 = 2 * d * ( d * * ( - 1  + j ) * j * t * * i / E X P ( d * * k )  -
*  d * * ( - 1  + j  + k ) * k * t * * i / E X P ( d * * k ) ) +
*  d * * 2 * ( d * * ( - 2  + j ) * ( - 1  + j ) * j * t * * i / E X P ( d * * k )  -
*  d * * ( - 2  + j  + k ) * j * k * t * * i / E X P ( d * * k )  +
*  d * * ( - 2  + j  + 2 * k ) * k * * 2 * t * * i / E X P ( d * * k )  -
*  d * * ( - 2  + j  +  k ) * k * ( - 1  + j  + k ) * t * * i / E X P ( d * * k ) )
I F  ( K . E Q . O )  D I F F 2 = D I F F 2 * E X P ( D * * K )

d p t = 2 * d * ( d * * ( - 1  + j ) * i * j * t * * ( - 1  + i ) / E x p ( d * * k )  -  
d * * ( - l  +  j  + k ) * i * k * t * * ( - 1  + i ) / E x p ( d * * k ) ) + 

d * * 2 * ( d * * ( - 2  + j ) * i * ( - l  + j ) * j * t * * ( - l  +  i ) / E x p ( d * * k )

d * * ( - 2  + j  + k ) * i * j * k * t * * ( - 1  + i ) / E x p ( d * * k )  +
-  d * * ( - 2  + j  + 2 * k ) * i * k * * 2 * t * * ( - 1  + i ) / E x p ( d * * k )  -
-  d * * ( - 2  + j  + k ) * i * k * ( - l  + j  + k ) * t * * ( - l  + 

i ) / E x p ( d * * k ) )
I F  ( K . E Q . O )  D P T = D P T * E X P ( D * * K )
RETURN
END

C
C

SUBROUTINE A R ( P P , DD, T T , ID D )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , P - Z )
COMMON/CONST/TC, P C , DC, R 
COMMON/ I D N O / P I D N ( 6 0 0 , 4 )
COMMON/DAT/MOBS, NCO, NMAX, NCON 
COMMON/ T E R M /F A C T ( 6 0 0 )
D=DD/DC  
T = T C / T T  

DO 102  1 = 1 , NCO 
P I T = P I D N ( 1 , 2 )
P I D = P I D N ( 1 , 3 )
P I D R = P I D N ( 1 , 4 )
I F  ( P I D R . E Q . O )  GOTO 105
F A C T ( I ) = T * * P I T * D * * P I D * E X P ( - D * * P I D R ) * T T * R  
GOTO 102

1 0 5  F A C T ( I ) = T * * P I T * D * * P I D * T T * R
102  CONTINUE  

RETURN 
END

C
C

SUBROUTINE I N I T ( )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , P - Z )
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C O M M O N / ID N O /P ID N ( 6 0 0 , 4 )
COMMON/DAT/MOBS, NCO, NMAX, NCON 

KK=1
DO 10 1 = 1 , 1 5  
DO 20 J = l , 20  
DO 3 0 K = 0 , 2 , 2  

P I D N ( K K , 1 ) =KK 
P I D N ( K K , 4 ) =K  
P I D N ( K K , 3 ) = J  
P I D N ( K K , 2 ) = 1  
KK=KK+1  

3 0 CONTINUE
20 CONTINUE  
10 CONTINUE  

RETURN 
END

C
SUBROUTINE I N I T 1 ( )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , P - Z )  
C O M M O N / ID N O /P ID N ( 6 0 0 , 4 )
COMMON/DAT/MOBS, NCO, NMAX, NCON 

OPEN( 4 , F I L E = • T E S T 1 . D AT ' , STATUS=' OLD• )  
DO 10 1 = 1 , NCO 
READ( 4 , * ) P I I , P I 4 , P I 3 , P I 2  
P I D N ( 1 , 1 ) = 1  
P I D N ( 1 , 2 ) = P I 2  
P I D N ( 1 , 3 ) = P I 3  
P I D N ( 1 , 4 ) = P I 4  

10 CONTINUE  
RETURN 
END

C
SUBROUTINE PRESSE( T E M , P C A , D E N , I N D )  
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , P - Z )  
COMMON/ COE/ COEF( 6 0 0 )
COMMON/ T E R M /F A C T ( 6 0 0 )
COMMON/DAT/MOBS, NCO, NMAX, NCON 
COMMON/ CONST/ T C , P C , ROC, R 
C O M M O N / ID N O /P ID N ( 6 0 0 , 4 )
D=DEN/ROC  
T = T C /T E M  
DO 10 K K = 1 , NCO 

P I = P I D N ( K K , 2)
P J = P I D N ( K K , 3)
P K = P I D N ( K K , 4 )
I F  ( P K . E Q .O )  GOTO 5 

F A C T ( K K ) = ( P J * D * * ( P J - 1 ) * T * * P I  -  
P K * D * * ( P J + P K - 1 ) * T * * P I ) / E X P ( D * * P K )
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GOTO 11
5 F A C T ( K K ) = P J * D * * ( P J - 1 ) * T * * P I
11  F A C T (K K ) = D E N * T E M * D * R * F A C T ( K K )
10 CONTINUE

I F  ( I N D . E Q . 0) RETURN 
SUM=0
DO 50 1 1 = 1 , NCO 

50  SUM=SUM+FACT( I I ) * C O E F ( I I ) 
PCA=DEN*TEM*R+SUM  
RETURN 
END

C
SUBROUTINE D P D D ( D P D , D D , T T , I D D )  
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , P - Z )  
COMMON/ CONST/ T C , P C , D C , R 
COMMON/ COE/ COEF( 6 0 0 )
COMMON/ I D N O / P I D N ( 6 0 0 , 4 )
COMMON/DAT/MOBS, NCO, NMAX, NCON 
COMMON/ TERM/ F A C T ( 6 0 0 )
COMMON/ O LDAT/BC OEF( 3 2 ) , B D ( 3 2 , 4 )  

D=DD/DC  
T = T C / T T  
SUM5=0
I F  ( I D D . E Q . 2 )  GOTO 12 
DO 11 1 = 1 , NCO
I F  ( COEF( I ) . EQ. 0 . AND. I D D . EQ. 1 )  GOTO 11  

P I T = P I D N ( 1 , 2 )
P I D = P I D N ( 1 , 3 )
P I D R O = P I D N ( 1 , 4 )

CALL D I F F P ( D , T , P I T , P I D , P ID R O , DPDO)
I F  ( I D D . E Q . O )  F A C T ( I ) =DPDO
I F  ( I D D . N E . 0 ) SUM5=SUM5+DPDO*COEF( I )

11  CONTINUE  
GOTO 20

12 DO 15 1 = 1 , 1 9
P I T = B D ( 1 , 2 )
P I D = B D ( 1 , 3 )
P ID R O = B D ( 1 , 4 )
CALL D I F F P ( D , T , P I T , P I D , P ID R O , DPDO) 

SUM5=SUM5+DPDO*BCOEF( I )
15 CONTINUE
20 I F  ( I D D . N E . 0)  D P D = ( S U M 5 * R * T T + R * T T )  

RETURN 
END

C
C

FUNCTION R H O F ( P , D E N , T )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , 0 - Z )
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C PARAMETER (NC = 3 2 ,  NE = NC + 1 )
C
C  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *

C
c
C PURPOSE —  T H I S  ROUTINE CALCULATES THE D E N S ITY  OF A F L U ID  
C AT T AND P G IVEN AN I N I T I A L  GUESS I N  FOP. ON E X I T ,
C I T  RETURNS THE FUGACITY C O E F F IC IE N T  I N  FOP. I T
C REQUIRES A ROUTINE ' P V T F '  WHICH CALCULATES P ,
C DPDD, AND GR = G ( T , P ) - G * ( T , 1)
C
C CODED BY— J .  F .  ELY
C THERMOPHYSICAL PROPERTIES D I V I S I O N
C NATIONAL ENGINEERING LABORATORY
C NATIONAL BUREAU OF STANDARDS
C BOULDER, COLORADO 8 0 3 0 2
C
C VERSION 2 . 0  —  5 / 2 3 / 8 2
C
C  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *

COMMON / R E F D A T / Z C ,  PTRP, DTRP, T T R P , CMW 
COMMON/ CONST/ T C , P C , DC, R 

LOGICAL SAT
DATA TOLERD, TOLERP, TOLERB, TLOWP/ 2 *  1 . 0 D - 7 ,  
1 . 0 D - 6 ,  1 . 0 D - 1 0 /

ESTABLISH BOUNDS AND START NEWTON-RAPHSON

SAT =  .F A L S E .
D =  DEN
I F  ( D . G T . 0 . 0 D 0 )  GO TO 0 3 0  

0 0 5  I F  ( T . L T . T C )  GO TO 0 10  
D = 2 . 0 D 0  *  DC 
I F  ( P . L T . P C )  D = P /  ( R * T )
GO TO 0 3 0  

0 1 0  SAT =  .T R U E .
CALL S A T F ( T , P S , D S L ,D S V)
D = DSV 

0 1 5  I F  ( P . L T . P S )  GO TO 0 30
D = ( 2 . 0 D 0 *D S L  + DTRP) /  3 . 0 D 0

ESTABLISH BOUNDS AND START NEWTON RAPHSON

0 3 0  D L O = 0 . 0
D H I  =  1 . 2 5 D 0  *  DTRP 
D l  =  D 
DMAX =  D H I
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DO 1 00  LAP = 1 , 20
CALL P V T F ( P X , D , T , DPDD, D2 PDD2, GR)

I F  DPDD I S  ZERO OR NEGATIVE,  TRY B IS E C T IO N

I F ( D P D D . L E . 1 . O D -3 )  GO TO 120  
I F  ( P X . L E . 0 . 0 )  GO TO 120  
D P = P -P X  
DD=DP/DPDD

SAVE DENSITY  FOR POSSIBLE B IS E C T IO N

I F  (DP) 0 4 0 , 3 0 0 , 0 6 0  
0 4 0  D H I= D

GO TO 0 80  
0 6 0  DLO=D 
0 8 0  DN=D+DD

KEEP D W IT H IN  BOUNDS OR GO TO

I F  ( D N . L T . 0 . 0 D 0  .OR.  DN.GT.DMAX) GO TO 120  
D=DN
I F ( L A P . EQ. 1 )  GO TO 100
I F ( A B S ( D P / P ) . L E . TOLERP .AND.  A B S ( D D / D ) . L E . TOLERD) GO 
TO 3 00
I F ( A B S ( D P ) . L E . TLOWP .AND.  A B S ( D D / D ) . L E . TOLERD) GO TO 

3 00
1 0 0  CONTINUE

NEWTON-RAPHSON F A IL U R E .  TRY B IS E C T IO N

1 2 0  I F  ( T . G T . T C )  GO TO 160

S U B - C R I T IC A L .  MAKE SURE THAT WE HAVE THE
PROPER BOUNDS ON THE D E N S IT Y .

1 3 0  I F  ( . N O T . S A T )  GO TO 0 10

I F ( D l . L T . DC) GO TO 1 40  
DLO =  DSL .
I F ( D H I . L E . DSL) DHI=DMAX  
GO TO 1 60

1 4 0  I F ( D L O . G E . D S V )  DLO=O.ODO 
D H I  =  DSV

START THE B IS E C T IO N
1 6 0  D = 0 . 5 0 D 0 * ( D L O + D H I )

CALL P V T F ( P X , D , T , DP D D ,D 2 P D D 2 , GR)
D P =P X-P
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I F ( D P )  2 0 0 , 3 0 0 , 2 2 0
2 00 DLO=D

GO TO 2 4 0  
22 0 D H I= D

C
2 4 0  I F ( A B S ( D P / P )  . L E .  TOLERB) GO TO 300

C
I F ( A B S ( D L O / D H I - 1 . 0 D 0 ) . G T . T O L E R D )  GO TO 1 60

B IS E C T IO N  F A IL E D .  G IV E  UP
2 6 0  WRITE ( 5 , 4 0 0 )  T ,  P

CONVERGENCE ! ! 1
3 00  RHOF=D

RETURN
4 00  FORM A T(z RHOF F A IL E D  AT T = ' , F 9 . 3 , '  P = ' , G 1 4 . 7 , Z DP 

z , G 1 4 . 7 )
END

SUBROUTINE PVTCMP 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

T H I S  SUBROUTINE PERFORMS THE PVT COMPARISONS.

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , 0 - Z )
PARAMETER (MPVT =  2 0 0 0 )

C
COMMON / PVTD/  NPVT,  I D ( M P V T ) ,  W T (M P V T ) ,  T ( M P V T ) ,
P ( M P V T ) ,

*  D(MPVT)
C

COMMON / R E F N /  NREF, I D R E F ( I O O )
COMMON / R E F S /  R E F E R ( 1 0 0 )
CHARACTER*80  REFER

C
PMIN =  1 0 0 0 0 0 0 .
PMAX = 0 .
T M IN  =  1 0 0 0 0 0 0 .
TMAX = 0 .
DMIN = 1 0 0 0 0 0 0 .
DMAX =  0 .
ID N  =  - 1  
I L T  =  0 
AADT = 0 . 0  
B IA S T  = 0 . 0  
RMST = 0 . 0
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NT =  0
B IA S P T  = 0 . 0  
AADPT = 0 . 0  
RMSPT =  0 . 0  
IT A B  =  5 
DO 1 00  1 = 1 , NPVT 
I D ( I ) =  I A B S ( I D ( I ) )
I F ( I D ( I ) . E Q . I D N )  GO TO 0 8 0  
I F  ( I D N . L T . 0)  GO TO 0 40

020  AADT =  AADT + AAD 
B IA S T  =  B IA S T  + B IA S  
RMST =  RMST + RMS 
B IA S P T  =  B IA S P T  + B IASP  
AADPT =  AADPT + AADP 
RMSPT =  RMSPT + RMSP
I F  ( N I . E Q . 0 )  GO TO 040  
NT =  NT + N I

0 2 1  AAD = AAD /  N I  
B IA S  = B IA S  /  N I
RMS = S Q R T ( R M S / N I - B I A S * B I A S )
W R I T E ( 3 , 2 0 0 )  I D R E F ( I R ) , N I , AAD, B I A S , RMS 
B IA S P  = B IA S P  /  N I  
AADP = AADP /  N I
RMSP = S Q R T ( R M S P / N I - B I A S P * B I A S P )
W R I T E ( 3 , 2 2  0 )  I D R E F ( I R ) ,  N I ,  AADP, B IA S P ,  RMSP 
W R I T E ( 3 , 2 2 5 )  T M I N ,  TMAX, PM IN ,  PMAX, D M IN ,  DMAX 
T M IN  =  1 0 0 0 0 0 0 .
TMAX =  0 .
PMIN = 1 0 0 0 0 0 0 .
PMAX =  0 .
DMIN = 1 0 0 0 0 0 0 .
DMAX =  0 .
I F  ( I . E Q . N P V T )  GO TO 1 00  

0 4 0  AAD = 0 . 0
IT A B  = IT A B  + 1 
B IA S  = 0 . 0  
RMS = 0 . 0  
B IA S P  =  0 . 0  
AADP = 0 . 0  
RMSP = 0 . 0  
N I  = 0 
I D N  = I D ( I )
DO 0 5 0  K =  1 ,  NREF 
I F  ( I D N . N E . I D R E F ( K ) ) GO TO 050  
I R  = K 
GO TO 0 60  

0 5 0  CONTINUE  
0 6 0  I L T  = 0
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W R IT E ( 3 , 2 3 9 )  IT A B
W R IT E ( 3 , 2 4 0 )  I D R E F ( I R ) ,  REFER( I R )

0 8 0  I L T  = I L T  + 1
I F  ( I L T . G E . 5 5 )  GO TO 0 60  
CALL PRESSE( T ( I ) , P C A L ,D ( I ) , 1 )
DCAL = R H O F ( P ( I ) , D ( I ) , T ( I ) )
D D I F  = - ( D C A L - D ( I ) ) * 1 0 0 . / D ( I )
P D I F  = - ( P C A L - P ( I ) ) * 1 0 0 . / P ( I )
CALL DPDD( D P D , D ( I ) , T ( I ) , 1 )
D T I  =  ( D C A L - D ( I ) )  /  DPD
I F  ( P ( I ) . G T . PMAX) PMAX =  P ( I )
I F  ( P ( I ) . L T . P M I N )  PMIN =  P ( I )
I F  ( T ( I ) . GT.TMAX) TMAX =  T ( I )
I F  ( T ( I ) . L T . T M I N )  T M IN  = T ( I )
I F  ( D ( I ) . G T . DMAX) DMAX =  D ( I )
I F  ( D ( I ) . L T . D M I N )  DMIN = D ( I )
W R I T E ( 2 5 , * ) W T( I )
W R IT E ( 3 , 2 6 0 )  T ( I ) ,  PCAL, P ( I ) , P D I F ,  DCAL, D ( I ) , D D IF

*  , W T ( I )  , D T I
I F  ( W T ( I ) . L E . O . O )  GO TO 100
N I  = N I  + 1
AAD = AAD + A B S ( D D I F )
B IA S  =  B IA S  + D D IF  
RMS =  RMS + D D I F  *  D D IF  
B IA S P  =  B IA S P  + P D I F  
AADP = AADP + A B S ( P D I F )
RMSP = RMSP + P D I F  *  P D I F  
I F  ( I . E Q . N P V T )  GO TO 0 2 0  

1 0 0  CONTINUE
AADT = AADT /  NT
B IA S T  =  B IA S T  /  NT
RMST = S Q R T ( R M S T /N T - B IA S T * B IA S T )
W R I T E ( 3 , 2 8 0 )  N T ,  AADT, B IA S T ,  RMST 
AADPT =  AADPT /  NT 
B IA S P T  =  B IA S P T  /  NT
RMSPT = SQRT(RM SPT/NT -  B IA S P T * B IA S P T )
W R I T E ( 3 , 3  0 0 )  NT ,  AADPT, B IA S P T ,  RMSPT

2 0 0  F O R M A T ( ' 0 [ ' , 1 3 , 7 ] N =  ' , 1 4 , '  AAD = ' , F 7 . 3 , '  B IA S  =
' , F 7 . 3  ,
*  ' RMS = ' , F 7 . 3 )

22 0 FORMAT( '  [ ' , 1 3 , ' ]  N =  ' , 1 4 , '  AADP= ' , F 7 . 3 , '  B IA S P =
' , F 7 . 3 ,
*  '  R M S P = ' , F 7 . 3 )

2 2 5  FORMAT( '  RANGES( T , P , D ) : ' , 6 F 8 . 3)
2 3 9  FORMAT( ' 1 ' , 6 X , ' T A B L E ' , 1 3 , '  EQUATION OF STATE V S .  

EXPERIMENTAL PVT
*  DATA (C O N T IN U E D ) ' )
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2 4 0  FORMAT( ' 0  R E F ' , 1 3 , 2 X , A / / '  T , K  P ,  CAL
P ,  EXP

1 P ,  % ' , '  D,  CALC D, EXP D, %
*  WT D T ' )

2 6 0
F O R M A T (F 1 2 . 4 , 2 F 1 2 . 3 , F 1 2 . 3 , 2 F 1 2 . 4 , F 1 2 . 3 , 1 P E 1 3 . 5 , 1 P E 1 3 . 5 )

2 8 0  FORMAT( ' COVERALL PVT RESULTS : N = z , 1 5 , ' AAD = ' , F 7 . 3 , ' 
B IA S  = ' ,

1 F 7 . 3 , z RMS = ' ,  F 7 . 3 )
3 0 0  F O R M A T ( 2 2 X , ZN = Z , 1 5 , '  AADP= ' , F 6 . 3 , '  B IA S P =  ' , F 6 . 3 , ' 

RMSP = ' , F 6 . 3)
RETURN
END

C
C
C
C

SUBROUTINE F I T V I R ( F V I R )
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c 
c
C T H I S  SUBROUTINE F I T S  THE V I R I A L  DATA 
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , 0 - Z )
PARAMETER (M V IR  = 1 0 0 )

C PARAMETER (NC = 3 2 ,  NF = NC + 1 )
C

COMMON / V I R I A L /  N V I R ,  I D V ( M V I R ) ,  W V ( M V I R ) ,  T V ( M V I R ) ,
B V (M V IR )
COMMON/ COE/ COEF( 6 0 0 )
COMMON/ T E R M /F A C T ( 6 0 0 )
COMMON/DAT/MOBS, NCO, NMAX, NCON 
COMMON/CONST/ T C , P C , ROC, R 
C O M M O N / ID N O /P ID N ( 6 0 0 , 4 )

C
DO 10 1 1 = 1 , N V IR  
DO 2 0 K K = 1 , NCO 

P I = P I D N ( K K , 2)
P J = P I D N ( K K , 3)
P K = P I D N ( K K , 4 )

F A C T ( K K ) = 0
i f  ( P j . g t . l )  g o t o  20
F A C T ( KK) =  ( PJ  * ( T C / T V ( I I ) ) * * P I )

20  CONTINUE
T V I R = T C / T V ( I I )
CALL V I R D I F ( T V I R , D B D T )

SB = 0 . 0 5  *  B V ( I I )
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ST = 0 . 0 0 5  *  DBDT
W V ( I I )  =  F V I R  /  SQRT( SB*SB + S T * S T )
I F  ( T V ( I I ) . L T . 2 7 6 . )  W V ( I I )  =  . 5 * W V ( I I )
I F  ( I D V ( I I ) . L E . O )  W V ( I I )  = 0 . 0  
R E S = B V ( I I )
DO 11 I J = 1 , NCO
F A C T ( I J ) = F A C T ( I J ) * W V ( I I )

11  CONTINUE
RES = RES * W V ( I I ) * R O C  
CALL F I T ( R E S , W V ( I I ) )

I F  ( W V ( I I ) . G T . O )  MOBS=MOBS+l  
10  CONTINUE  

RETURN 
END

C
C

SUBROUTINE VIRCMP
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c 
c
C T H I S  SUBROUTINE PERFORMS THE SECOND V I R I A L  COMPARISONS.  
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , 0 - Z )
PARAMETER (M V IR  = 1 0 0 )
PARAMETER (NC = 3 2 ,  NF = NC + 1 )

C
COMMON / V I R I A L /  N V I R ,  I D V ( M V I R ) ,  W V ( M V I R ) ,  T V ( M V I R ) ,
B V (M V IR )

C
COMMON/COE/COEF( 6 0 0 )
COMMON/ TERM/ F A C T ( 6 0 0 )
COMMON/DAT/MOBS, NCO, NMAX, NCON 
COMMON/CONST/TC, P C , ROC, R 
C O M M O N / ID N O /P ID N ( 6 0 0 , 4 )

C
W R I T E ( 3 , 2 0 0 )
NV = 0
AAD = 0 . 0
B IA S  = 0 . 0
DO 1 0 0  J  =  1 ,  N V I R
B=0
DO 1 J J = 1 , NCO 
P I = P I D N ( J J , 2 )
P J 1 = P I D N ( J J , 3)
P K = P I D N ( J J , 4 )
F A C T ( J J ) = 0
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I F  ( P J 1 . G T . 1 )  GOTO 1
F A C T ( J J ) = ( P J 1 * ( T C / T V ( J ) ) * * P I ) / R O C
B =B +FA C T( J J ) * C O E F ( J J )

1 CONTINUE
C B = ( G ( 1 ) * T  + G ( 2 ) * T S  + G ( 3 )  + G ( 4 ) / T  + G ( 5 ) / T * * 2 )  /

( R * T )
D I F  =  - 1 0 0 0 . 0 * ( B  -  BV ( J ) )
I F  ( I D V ( J ) . L E . O )  GO TO 0 90  
AAD = AAD + A B S ( D I F )
NV = NV + 1 
B IA S  = B IA S  + D I F  

0 9 0  W R I T E ( 3 , 2 1 0 )  I D V ( J ) , T V ( J ) ,  B,  B V ( J ) ,  D I F ,  W V (J )  
W R I T E ( 2 5 , * ) W V ( J )

1 0 0  CONTINUE
AAD = AAD /  NV
B IA S  = B IA S  /  NV
W R I T E ( 3 , 2 2 0 )  NV, AAD, B IA S

C
2 0 0  FORMAT( ' 1SECOND V I R I A L  COMPARISONS'/  ' 0  I D  T , K 

B(CALC)
* B ( E X P )  D I F , C C  W T ' )

2 1 0  FORMAT( 1 5 , F 9 . 3 , 2 F 1 0 . 6 , F 8 . 3 , F10  . 1 )
2 2 0  FORMAT( ' ON = ' , 1 4 , '  AAD = ' , F 8 . 3 ,  ' B IA S  = ' , F 8 . 3 )

RETURN 
END

C
C

SUBROUTINE W E IG H T (D O ,T O ,D P D O , DPTO)
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , P - Z )
COMMON/CONST/TC, P C , ROC, R 
COMMON/ OLDAT/ BCOEF( 3 2 ) , B D ( 3 2 , 4 )
SUM4=0
SUM5=0
SUM6=0
T = T C /T O
D=DO/ROC
DO 10  1 = 1 , 1 9
P I T = B D ( 1 , 2 )
P I D = B D ( 1 , 3 )
P ID R O = B D ( 1 , 4 )
CALL D I F F 5 ( D , T , P I T , P I D , P I D R O , D P D , D P D D , D P T )  
SUM4=SUM4+DPD*BCOEF( I )
SUM5=SUM5+DPDD*BCOEF( I )
SUM6=SUM6+DPT*BCOEF( I )

10  CONTINUE
S UM 4=SUM 4*TO*D O*D *R  
PP=SUM4+DO*TO*R
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D P D 0 = ( S U M 5 *R *T O + R *T O )
D P T O = P P /T O -S U M 6 * D O * R * D * T
RETURN
END

C
SUBROUTINE JGE
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , P - Z )
COMMON/ OLDAT/BC OEF( 3 2 ) , B D ( 3 2 , 4 )
OPEN( 1 0 , F I L E = ' COEF. D AT ' , STATUS=' OLD' )
OPEN( 8 , F I L E = ' OLDTERM. D AT' , STATUS=' OLD' )
DO 10 1 = 1 , 1 9  
READ( 1 0 , * ) BCOEF( I  )
READ( 8 , * ) B D ( 1 , 1 ) , B D ( I , 4 ) , B D ( I , 3 ) , B D ( I , 2 )

10 CONTINUE  
RETURN 
END

C
C

SUBROUTINE F I T C V ( F C V )  
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c 
c
C T H I S  SUBROUTINE F I T S  THE CV DATA.
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c

I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , 0 - Z )
PARAMETER (MCV = 2 0 0 )

C
COMMON/COE/COEF( 6 0 0 )
COMMON/ T E R M /F A C T ( 6 0 0 )
COMMON/DAT/MOBS, NCO, NMAX, NCON 
COMMON/ CONST/ T C , P C , DC , R 
C O M M O N / ID N O /P ID N ( 6 0 0 , 4 )
COMMON /R E F D A T / Z C ,  PTRP, DTRP, TTRP,CMW
COMMON / CVDAT/  NCV, I D C V ( M C V ) ,  WC V(MCV) ,  T C V ( M C V ) ,
P C V ( M C V ) ,
*  D C V (M C V ) ,  CV(MCV)

c
D IM EN SIO N  F ( 6 0 0 ) , A ( 2 0 0 )
DATA R J ,  EPS / 8 . 3 1 4 3 4 ,  0 . 0 1 /

C
DO 1 4 0  I  = 1 ,  NCV 
I F ( C V ( I ) . L E . 0 . 0 )  GO TO 0 50  
CALL I D E A L ( T G V ( I ) , CVO, SO)
DELCV =  0 . 0 1  *  ( C V ( I )  -  CVO)
TR =  T C V ( I )  /  TC 
DR = D C V ( I )  /  DC
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CALL D P 2 D T 2 ( D P 2 , D C V ( I ) , T C V ( I ) , 2 )
5 IC C  = 0 . 0 2  *  C V ( I )
S IGD = 0 . 0 0 1  *  T C V ( I )  *  DP2 /  D C V ( I )
S IG T  = 0 . 5  *  C V ( I )  /  T C V ( I )
W C V ( I )  =  1 0 0 * F C V  /  S Q R T ( S I G C * * 4  + S I G D * * 2  + S I G T * * 2 )  *  
T R * * 2
I F ( A B S ( T R - 1 . 0 ) . L T . 0 . 0 2 5  .AND. A B S ( D R - 1 . 0 ) . L T . 0 . 1 )

*  W C V ( I )  =  0 . 0  
I F ( I D C V ( I ) . G T . 0)  GO TO 0 20  
I D C V ( I )  =  - I D C V ( I )
W C V ( I )  =  0 . 0  
GO TO 1 40  

0 20  CALL C V R ( P P , D C V ( I ) , T C V ( I ) , 0 )
DO 0 3 0  J  =  1 ,  NCO 

0 3 0  F ( J )  = F A C T ( J )
CALL C V R ( P P , 0 . 0 D 0 , T C V ( I ) , 0 )
DO 0 40  J  =  1 ,  NCO 

0 4 0  F A C T ( J )  = ( F A C T ( J ) -  F ( J ) )
RES=DELCV
I F  ( W C V ( I ) . G T . O )  MOBS=MOBS+l  
DO 11  I J = 1 , NCO 

F A C T ( I J ) = F A C T ( I J ) *W CV( I )
11  CONTINUE

RES =  RES*WCV( I )
GO TO 1 20

C C (S A T )  DATA
0 5 0  T1  =  T C V ( I )  -  EPS 

D l  = D S A T L ( T l )
C CALL S R ( P P , D 1 , T 1 , 0)

DO 0 6 0  J  =  1 ,  NC 
0 6 0  F ( J )  = A ( J )

C CALL S R ( P P , 0 . 0 D 0 , T 1 , 0 )
DO 0 7 0  J  =  1 ,  NC 

0 7 0  F ( J )  =  F ( J )  - A ( J )
T2 =  T l  + 2 . 0 *E P S  
D2 =  D S A T L ( T 2 )

C CALL S R ( P P , D 2 , T 2 , 0)
CALL I D E A L ( T l , C V 1 , S I )
CALL I D E A L ( T 2 ZC V 2 ZS2)
TERM = -  T C V ( I )  /  ( 2 . 0  *  EPS)
Y = A B S ( C V ( I ) )  + ( R J * L 0 G ( D 1 * T 1 / ( D 2 * T 2 ) ) -  S I  +  S2)  *  
TERM
Y =  0 . 0 1  *  Y
TR = T C V ( I )  /  TC
W C V ( I )  =  FCV /  SQRT( 0 . 0 2  *  Y *  T R * * 3 )
I F ( I D C V ( I ) . G T . 0)  GO TO 0 80  
I D C V ( I )  =  - I D C V ( I )
W C V ( I )  =  0 . 0
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0 8 0  Y = Y *  W C V ( I )
DO 0 9 0  J  =  1 ,  NC 

0 90  F ( J )  =  F ( J )  -  A ( J )
C CALL S R ( P P , 0 . 0 D 0 , T 2 , 0 )

DO 1 00  J  =  1 ,  NC 
1 0 0  F ( J )  = W C V ( I )  *  ( F ( J )  + A ( J ) ) *  TERM 
1 20  CALL F I T ( R E S , WCV( I ) )
1 4 0  CONTINUE  

RETURN 
END

SUBROUTINE I D E A L ( T f C V Z , SZ)
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , 0 - Z )  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

PURPOSE ------  T H I S  ROUTINE CALCULATES THE ID E A L  GAS
PROPERTIES OF NEON USING THE S A T I S T IC A L  
MECHANICAL EXPRESSION FOR CP

REFERENCE STATES ARE: S ( 2 9 8 . 1 5 )  =  8 3 . 5 2 0  C A L /M O L -K
H ( 0 )  =  0

CODED BY: J .  F .  ELY
THRMOPHY S IC S  D I S I V I S O N  7 7 4 . 0 3  
NATIONAL BUREAU OF STANDARDS 
BOULDER, CO 8 03  03

VERSION 1 . 0  -  3 / 2 6 / 8 8

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

DATA C l ,  C 2 , C3 /  1 . 9 4 0 0 6 D + 0 1 ,  2 . 5 8 5 3 1 D - 0 1 ,
- 1 . 2 9 6 6 5 D - 0 4  /
DATA HRF, SRF /  0 . 0 D 0 ,  0 . 0 D 0  /

CPZ = C l  +  C 2 * T  + C 3 * T * * 2
SZ = C l  *  LOG(T )  + T *  (C2 + T *  C 3 / 2 . 0 D 0 )  + SRF
CVZ = CPZ -  8 . 3 1 4 4 1 D 0
RETURN
END

SUBROUTINE CVCOMP 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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C T H I S  SUBROUTINE PERFORMS THE CV COMPARISONS.
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , 0 - Z )
PARAMETER (MCV = 2 00 )

C
COMMON /C V D A T /  NCV, I D C V ( M C V ) , WCV(MCV) ,  T C V ( M C V ) , 
P C V ( M C V ) ,

*  D C V ( M C V ) , CV(MCV)
c
C COMMON / D E R I V /  DPSDT, DDSDT
C

W R I T E ( 3 , 2 0 0 )
AAD = 0 . 0  
B IA S  =  0 . 0  
RMS = 0 . 0  
NT = 0
DO 1 0 0  1 = 1 ,  NCV
I F  ( C V ( I ) . L T . O )  GO TO 1 00
CALL PRESSE( T C V ( I ) , P C A L , D C V ( I ) , 1 )
DCAL =  RHOF( P C V ( I ) , D C V ( I ) , T C V ( I ) )
PPCT =  - 1 0 0 . 0  *  (PCAL -  P C V ( I ) )  /  P C V ( I )
DPCT =  - 1 0 0 . 0  *  (DCAL -  D C V ( I ) )  /  D C V ( I )
CVCAL =  C V F ( D C V ( I ) , T C V ( I ) )
PCT = - 1 0 0 . 0  *  ( C V C A L -C V ( I ) )  /  C V ( I )
W R I T E ( 3 , 2 4 0 )  I D C V ( I ) ,  T C V ( I ) ,  PCAL, PPCT, DCAL,

*  DPCT, CVCAL, C V ( I ) ,  PCT,  W C V ( I )
C I F  ( W C V ( I ) . L E . 0 . 0 )  GO TO 100

AAD =  AAD + ABS(PCT)
B IA S  = B IA S  + PCT 
RMS =  RMS + PCT*PCT  
N I  =  N I  + 1 

1 00  CONTINUE
I F  ( N I . E Q . 0 )  GO TO 1 20
AAD = AAD /  N I
B IA S  = B IA S  /  N I
RMS =  SQRT( R M S /N I  -  B I A S * B I A S )
W R I T E ( 3 , 2 6 0 )  N I ,  AAD, B I A S ,  RMS

C
C C (S A T )  COMPARISONS
C

1 2 0  NT = 0
AAD = 0 . 0  
B IA S  = 0 . 0  
RMS = 0 . 0  

C W R I T E ( 3 , 2 2 0 )
DO 1 4 0  1 = 1 ,  NCV
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I F  ( C V ( I ) . G T . O )  GO TO 140  
C V ( I )  =  - C V ( I )
CALL D P D T ( D P T , D C V ( I ) , T C V ( I ) , 1 )
DL =  D S A T L ( T C V ( I ) )
CVCAL =  C V F ( D L , T C V ( I ) )
CVCAL = CVCAL -  1 0 0 . 0  *  ( T C V ( I )  *  DPT *  DDSDT /  
( D L * D L ) )
PCT =  1 0 0 . 0  *  (CVCAL -  C V ( I ) ) /  C V ( I )
W R IT E ( 3 , 2 5 0 )  I D C V ( I ) , T C V ( I ) ,  D C V ( I ) ,  CVCAL, C V ( I ) , 
PCT,  W C V ( I )
W R IT E ( 2 5 , * ) WCV( I )

C I F  ( W C V ( I ) . L E . 0 . 0 )  GO TO 140
AAD = AAD + ABS(PCT)
RMS =  RMS + PCT *  PCT 
B IA S  =  B IA S  + PCT 
N I  =  N I  + 1 

14 0 CONTINUE
I F  ( N I . E Q . 0 )  GO TO 160  
AAD = AAD /  N I  
B IA S  =  B IA S  /  N I  
RMS =  S Q R T ( R M S / N I - B I A S * B I A S )
W R IT E ( 3 , 2 6 0 )  N I ,  AAD, B I A S ,  RMS 

1 6 0  RETURN
2 0 0  FORMAT( ' 1 C V ( D , T )  COMPARISONS'/

* ' 0  I D  T , K  P ,C A L  P,%
*  C V , CAL C V ,EX P  %

C 2 2 0  FORMAT( ' 1 C (SAT) COMPARISONS'/
C * ' 0  I D  T , K  D , M / L  C S , CAL

WT' )
2 4 0  FORMAT( 1 5 , 2 F 9 . 3 , F 9 . 2 , I X , F 9 . 4 , F 9 . 2 , I X , 2 F 9 . 3 , F 6 . 2 , F 9 . 1 ,

*  2 F 9 . 3 )
2 5 0  FORMAT( 1 5 , F 9 . 3 , F 9 . 4 , 2 F 9 . 3 , F 8 . 3 , F 8 . 2 )
2 6 0  FORMAT( ' ON =  ' , 1 6 , '  AAD =  ' , F 7 . 3 , '  B IA S  = ' , F 7 . 3 , '  

RMS = ' , F 7 . 3 )
END

c
c

FUNCTION C V F ( D , T )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , 0 - Z )
CALL CVR( CVD, D , T , 1 )
CALL C VR(C VO , 0 . 0 D 0 , T , 1)
CALL I D E A L ( T , C V I , S I )
CVF =  C V I  -  1 0 0 . 0  *  (CVD-CVO)
RETURN
END

c
c

SUBROUTINE C V R ( P P , D D , T T , L )

D, CAL 
WT' )

D,

C S , EXP CS,
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I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , P - Z )
COMMON/ C O E /C O EF ( 6 0 0 )
COMMON/ T E R M /F A C T ( 6 0 0 )
COMMON/ C O N S T /T C ,P C ,D C ,  R 
COMMON/DAT/MOBS, NCO, NMAX, NCON 
C O M M O N / ID N O /P ID N ( 6 0 0 , 4 )
D=DD/DC  
T —T C / TT
DO 10 1 1 = 1 , NCO 
P I = P I D N ( 1 1 , 2 )
P J = P I D N ( 1 1 , 3 )
P K = P I D N ( 1 1 , 4 )
I F  ( P K . E Q .O )  GOTO 5
F A C T ( I I ) = D * * P J * ( - 1 + P I ) * P I * T * * ( - 2 + P I ) / E X P ( D * * P K )  
GOTO 8
F A C T ( I I ) = D * * P J * ( - 1 + P I ) * P I * T * * ( - 2 + P I )
F A C T ( I I ) = R * T * * 2  * F A C T ( I I )

0 CONTINUE
I F  ( L . E Q . O )  RETURN 
PP=0
DO 2 0 J J = 1 , NCO 
I F  ( C O E F ( J J ) . E Q . O )  GOTO 20  
P P = P P + C O E F ( J J ) * F A C T ( J J )

0 CONTINUE  
RETURN 
END

SUBROUTINE D I F F P O ( D , T , I , J , K , D I F F 1 )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - Z )
D I F F 1 = ( D * * ( J - l ) * J * T * * I - D * * ( J + K - l ) * K * T * * I ) / E X P ( D * * K )  
I F  ( K . E Q . O )  D I F F 1 = D I F F 1 * E X P ( D * * K )
RETURN
END

SUBROUTINE V I R D I F ( T , D B D T )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - Z )
COMMON/CONST/ T C , P C , ROC, R 
COMMON/ OLDAT/ BCOEF( 3 2 ) , B D ( 3 2 , 4 )

SUM=0
DO 10 1 1 = 1 , 1 9  

I = B D ( I I , 2 )
J = B D ( I I , 3 )
K = B D ( 1 1 , 4 )

I F  ( J . N E . l )  GOTO 10  
C d d d t = d * * ( - l  + j ) * 1 * j * t * * ( - 1  + i ) / E x p ( - d * * k )  -
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C -  d * * ( - 1  + j  + k ) * i * k * t * * ( - 1  + i ) / E x p ( - d * * k )
DDDT =  I * T * * ( - 1 + I )
SUM =SU M +D D D T*B C O EF( I I )

10  CONTINUE
D B D T = S U M * ( - T * * 2 ) / (TC*ROC)

RETURN
END

c
SUBROUTINE D I F F P ( D , T , I , J , K , D I F F 2 )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - Z )

D I F F 2 = 2 * d * ( d * * ( - l  + j ) * j * t * * i / E X P ( d * * k )  -
*  d * * ( - 1  + j  + k ) * k * t * * i / E X P ( d * * k ) ) +
*  d * * 2 * ( d * * ( - 2  + j ) * ( - 1  + j ) * j * t * * i / E X P ( d * * k )  -
*  d * * ( - 2  + j  + k ) * j * k * t * * i / E X P ( d * * k )  +
*  d * * ( - 2  + j  + 2 * k ) * k * * 2 * t * * i / E X P ( d * * k )  -
*  a * * ( - 2  +  j  + k ) * k * ( - 1  + j  + k ) * t * * i / E X P ( d * * k ) )
I F  ( K . E Q . O )  D I F F 2 = D I F F 2 * E X P ( D * * K )
RETURN
END

c
c

SUBROUTINE D I F F T 2 ( D , T , I , J , K , D P T 2 )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - Z )

d p T 2 = 2 * d * ( d * * ( - 1  + j ) * i * j  * t * * ( - 1  + i ) / E x p ( d * * k )  -  
d * * ( - 1  + j  + k ) * i * k * t * * ( - 1  + i ) / E x p ( d * * k ) ) +

-  d * * 2 * ( d * * ( - 2  + j ) * i * ( - 1  + j ) * j * t * * ( - l  +
i ) / E x p ( d * * k )  -
d * * ( - 2  + j  + k ) * i * j  * k * t * * ( - 1  + i ) / E x p ( d * * k )  +
d * * ( - 2  + j  + 2 * k ) * i * k * * 2 * t * * ( - 1  + i ) / E x p ( d * * k )  -
d * * ( - 2  + j  + k ) * i * k * ( - 1  + j  + k ) * t * * ( - 1  +
i ) / E x p ( d * * k ) )

I F  ( K . E Q . O )  D P T 2 = D P T 2 * E X P ( D * * K )

RETURN
END

c
SUBROUTINE D P 2 D D 2 ( D P D , D D , T T , ID D )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , P - Z )
COMMON/ CONST/ T C , P C , DC, R 
COMMON/C O E /C O E F ( 6 0 0 )
COMMON/I D N O / P I D N ( 6 0 0 , 4 )
COMMON/ DAT/ MOBS, NCO, NMAX, NCON 
COMMON/TERM/FACT( 6 0 0 )

D=DD/DC
T = T C / T T
SUM5=0
DO 11 1 = 1 , NCO



o 
o

T-4456 209

P I T = P I D N ( 1 , 2 )
P I D = P I D N ( I , 3 )
P ID R O = P I D N ( 1 , 4 )
CALL D I F F P 2 ( D , T , P I T , P I D , P I D R O , D P D O )
F A C T ( I ) =DPDO 

11  CONTINUE
RETURN 
END

c
SUBROUTINE D I F F P 2 ( D , T , I , J , K , D P D 2 )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - Z )

D P D 2 = 2 * d * * ( - 1  + j ) * j  * t * * i / E x p ( d * * k )  -  
2 * d * * ( - l  + j  + k ) * k * t * * i / E x p ( d * * k )  +

-  2 * d * ( d * * ( - 2  + j ) * ( - 1  + j ) * j  
E x p ( d * * k )  -
d * * ( - 2  + j  + k ) * j * k * t * * i / E x p ( d * * k )  +

-  d * * ( - 2  + j  + 2 * k ) * k * * 2 * t * * i / E x p ( d * * k )  -
d * * ( - 2  + j  + k ) * k * ( - 1  + j  + k ) * t * * i /
E x p ( d * * k ) ) +
d * ( 2 * d * * ( - 2  + j ) * ( - 1  + j ) *
E x p ( d * * k )  -

-  2 * d * * ( - 2  + j  + k ) * j * k * t * * i / E x p ( d * * k )  +
-  2 * d * * ( - 2  + j  + 2 * k ) * k * * 2 * t * * i /

E x p ( d * * k )  -
2 * d * * ( - 2  + j  + k ) * k * ( - 1  + j  + k ) * t * * i /  
E x p ( d * * k )  +
d * ( d * * ( - 3  + j ) * ( - 2  + j ) * ( - 1  + j ) * j *  
t * * i / E x p ( d * * k )  -

-  d * * ( - 3  + j  + k ) * ( - 1  + j ) * j  * k * t * * i /
E x p ( d * * k )  +

-  d * * ( - 3  + j  + 2 * k ) * j * k * * 2 * t * * i /
E x p ( d * * k )  -

-  d * * ( - 3  + j  + 3 * k ) * k * * 3 * t * * i /
E x p ( d * * k )  -
d * *  ( - 3  + j  + k )  *  j  * k *  ( - 2  + j  + k )  *  
t * * i / E x p ( d * * k )  +
d * * ( - 3  + j  + 2 * k ) * k * * 2 * ( - 1  + j  + k ) *  
t * * i / E x p ( d * * k )  -
d * * ( - 3  + j  + k ) * k * ( - 2  + j  + k ) *
( - 1  + j  + k ) * t * * i / E x p ( d * * k )  + 
d * * ( - 3  + j  + 2 * k ) * k * * 2 *
( - 2  + j  + 2 * k ) * t * * i / E x p ( d * * k ) ) )

I F  ( K . E Q . O )  D P D 2 = D P D 2 * E X P (D * * K )
RETURN
END

SUBROUTINE D I F F D D ( D , T , I , J , K ,D D D D )
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I M P L I C I T  DOUBLE P R E C IS IO N  ( A - Z )
d d d d = d * * ( - 2  + j ) * ( - 1  + j ) * j  * t * * i / E X P ( d * * k )  -

-  d * * ( - 2  + j  + k ) * j  * k * t * * i / E X P ( d * * k )  +
-  d * * ( - 2  + j  + 2 * k ) * k * * 2 * t * * i / E X P ( d * * k )  -

d * * ( - 2  + j  + k ) * k * ( - 1  + j  + k ) * t * * i /
E X P ( d * * k )

I F  ( K . E Q . O )  D DD D=DDDD *EXP(D**K)
RETURN
END

c
c

SUBROUTINE D I F F T D ( D , T , I , J , K ,DDDT)
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - Z )

d d d t = d * * ( - l  + j ) * i * j * t * * ( - 1  + i ) / E X P ( d * * k )  -
-  d * * ( - l  + j  + k ) * i * k * t * * ( - 1  + i ) / E X P ( d * * k )
I F  ( K . E Q . O )  D D D T = D D D T *E X P (D **K )
RETURN
END

SUBROUTINE N O N L I N ( P P , D D , T T , CPNL)
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , P - Z )
COMMON/ OLDAT/ BCOEF( 3 2 ) , B D ( 3 2 , 4 )
COMMON/ CONST/ T C , P C , D C , R
D=DD/DC
T = T C / T T
DO 10 1 1 = 1 , 1 9
I = B D ( I I , 2 )
J = B D ( 1 1 , 3 )
K = B D ( 1 1 , 4 )
CALL D I F F T D ( D , T , I , J , K , D D D T )
CALL D I F F P O ( D , T , I , J , K , D A D D )
CALL D I F F D D ( D , T , I , J ,K ,D D D D )
SUM D=SU M D +B C O EF( I I ) *D A D D  
SUMDD=SUMDD+BCOEF( I I ) *DDDD  
S U M D T = S U M D T + B C O E F ( I I ) *D D D T  

10 CONTINUE
C P N L = ( 1 + D * S U M D - D * T * S U M D T ) * * 2 / (1 + 2 * D * S U M D + D * * 2 * S U M D D )
CPNL=CPNL*R
RETURN
END

C
SUBROUTINE D P D T ( D P T , D D , T T , I D D )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , P - Z )

COMMON/ CONST/ T C , P C , DC , R 
COMMON/ COE/ COEF( 6 0 0 )

C O M M O N / ID N O /P ID N ( 6 0 0 , 4 )
COMMON/DAT/MOBS, NCO, NMAX, NCON
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COMMON/ T E R M /F A C T ( 6 0 0 )
COMMON/ OLDAT/ BCOEF( 3 2 ) , 6 0 ( 3 2 , 4 )
D=DD/DC
T = T C / T T
SUM4=0
SUM5=0
I F  ( I D D . E Q . 2 )  GOTO 12 
DO 11 1 = 1 , NCO 

P I T = P I D N ( 1 , 2 )
P I D = P I D N ( 1 , 3 )
P ID R O = P I D N ( 1 , 4 )

CALL D I F F P O ( D , T , P I T , P I D , P I D R O , D A D D )
CALL D I F F T D ( D , T , P I T , P I D , P ID R O , DPDO) 
SUM4=SUM4+DADD*COEF( I)
SUM5=SUM5+DPDO*COEF( I )

11  CONTINUE  
GOTO 20

12 DO 15 1 = 1 , 1 9
B I T = B D ( 1 , 2 )
B I D = B D ( 1 , 3 )
B ID R O = B D ( 1 , 4 )

CALL D I F F P O ( D , T , B I T , B I D , B I D R O , D A D D )
CALL D I F F T D ( D , T , B I T , B I D , B ID R O , DPDO) 
SUM4=SUM4+DADD*BCOEF( I )
SUM5=SUM5+DPDO*BCOEF( I )

15  CONTINUE
20  D P T = R * ( D D + D C * D * * 2 * S U M 4 - D C * D * * 2 * T * S U M 5 )

RETURN
END

C
C

SUBROUTINE F I T D P D ( FDPD)
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c 
c
C T H I S  SUBROUTINE F I T S  THE DPD DATA.
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , 0 - Z )
PARAMETER (MDPD =  5 0 0 )

C PARAMETER (NC = 3 2 ,  NF = NC + 1 )
C

COMMON / DPDAT/  NDP, I D P ( M D P D ) ,  WDP(MDPD),  T D P (M D P D ) ,  
D D P (M D P D ) ,

*  DPDX(MDPD)
C
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COMMON/DAT/MOBS, NCO, NMAX, NCON 
COMMON/ TERM/ F A C T ( 6 0 0 )
C O M M O N /C O N ST/TC ,P C ,D C ,R  

C COMMON / F I T C O M /  F (NF)
C
C COMMON /R E F D A T /  R ,  PC, DC, TC,  ZC, G ( N C ) ,  GAMMA,
P T R P , DTR P, TTRP  
C *  , CMW
C 
C

DO 1 0 0  J = l ,  NDP
CALL D P D D ( D P D X ( J ) , D D P ( J ) , T D P ( J ) , 0 )
RES =  D P D X ( J ) - R * T D P ( J )
W DP(J)  =  FDPD /  S Q R T ( A B S ( R E S ) )

C I F  ( T D P ( J ) . G T .  3 7 0 .  ) W DP(J) =  5 0 . 0 * W D P (J )
C I F  ( A B S ( T D P ( J ) - T C ) . L T . 2 0 . 0 D 0 )  WDP(J)  =  2 . 0 * W D P ( J )

I F ( I D P ( J ) . G T . 0)  GO TO 0 20  
I D P ( J )  =  - I D P ( J )
W D P(J)  =  0 . 0  

0 20  DO 0 4 0  K = 1 ,  NCO 
0 4 0  F A C T (K )  =  FA C T (K )  *  T D P ( J ) * R  

C Y = WDP(J)  *  Y
C WDP( J ) = W D P ( J ) * F D P D

I F  ( W D P ( J ) . G T . O )  MOBS=MOBS+l  
DO 11  I J = 1 , NCO 

F A C T ( I J ) = F A C T ( I J ) * W D P ( J )
11 CONTINUE

RES=RES*W DP(J)
CALL F I T ( R E S , W D P ( J ) )

1 0 0  CONTINUE  
RETURN 
END

C
C
C

SUBROUTINE DPDCMP 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c 
c
C T H I S  SUBROUTINE PERFORMS THE DPDD COMPARISONS.
C
Ç * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , 0 - Z )
PARAMETER (MDPD = 5 0 0 )

C
COMMON / D P D A T /  NDP, I D P ( M D P D ) ,  W D P(M DPD), T D P ( M D P D ) , 
D D P (M D P D ) ,
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*  DPDX(MDPD)
C

W R I T E ( 3 , 2 0 0 )
C

AAD = 0 . 0  
B IA S  = 0 . 0  
RMS = 0 . 0  
DO 1 0 0  J = 1 , NDP
CALL DPDD(DPDC, D D P ( J ) , T D P ( J ) , 1 )
PCT = - 1 0 0 . 0 * (D P D C -D P D X ( J ) ) / D P D X ( J )
W R IT E ( 3 , 2 2 0 )  I D P ( J ) ,  T D P ( J ) ,  D D P ( J ) ,  D P D X ( J ) ,  DPDC,  
PCT,  WDP(J)
W R IT E ( 2 5 , * ) WDP( J )
I F  ( W D P ( J ) . L E . 0 . 0 )  GO TO 100  
AAD = AAD + A BS(PCT)
B IA S  =  B IA S  + PCT 
RMS = RMS + PCT*PCT  

1 0 0  CONTINUE
AAD =  AAD /  NDP
B IA S  =  B IA S  /NDP
RMS = S Q R T (R M S /N D P ~ B IA S *B IA S )
W R I T E ( 3 , 2 4 0 )  NDP, AAD, B I A S ,  RMS

C
RETURN

2 0 0  FORMAT( ' 1DPDD C O M P A R IS O N S ' / '  I D  T D
DPDDX
1DPDDC PCT W T ' )

2 2 0  FORMAT( 1 5 , F 8 . 3 , F 1 0 . 5 , 2 F 1 0 . 3 , F 8 . 3 , F 1 0 . 4 )
2 4 0  FORMAT( ' ON =  ' , 1 6 ,  ' AAD =  ' , F 7 . 3 , '  B IA S  =  ' , F 7 . 3 , '  

RMS = ' , F 7 . 3 )
END

C
C
C

SUBROUTINE WSPCMP
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c 
c
C T H I S  SUBROUTINE PERFORMS THE SOUND V EL O C IT Y  COMPARISONS.  
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , 0 - Z )
PARAMETER (MWSP =  4 5 0 )

C
COMMON /SOU N D /  NWS, IDWS(M WSP),  TWS(MWSP) ,  PWS(MWSP),  
WSPT(MWSP)

C
C COMMON /R E F D A T /  R ,  PC, DC, TC,  ZC, G ( N C ) ,  GAMMA,
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P T R P , DTRP, TTRP  
C *  , CMW

COMMON / R E F D A T / Z C ,  PTRP, DTRP, TTRP,CMW 
COMMON/CONST/TC, P C , DC, R

C
COMMON /D P D C A L /  CP, CV, DPD, DPT

C
AAD =  0 . 0  
B IA S  = 0 . 0  
RMS =  0 . 0  
N =  0
W R I T E ( 3 , 4 0 0 )
DO 0 2 0  J  = 1 ,  NWS 
I F  ( W S P T ( J ) . L E . 0 . 0 )  GO TO 020  
D = RHOF(PWS( J ) , 0 . 0 D 0 , TWS( J ) )
WCAL = W S F (D ,T W S ( J ) )
N = N + 1
PCT =  - 1 0 0 . 0  *  (WCAL -  W S P T ( J ) ) /  W SPT(J )
AAD =  AAD + A BS(PCT)
B IA S  = B IA S  + PCT 
RMS =  RMS + PCT *  PCT
W R I T E ( 3 , 4 1 0 )  I D W S ( J ) , T W S ( J ) ,  P W S ( J ) ,  WCAL, W S P T ( J ) ,  
PCT
DPDX = 1 . 0 E - 5  *  CMW *  W SPT(J )  *  W S P T(J )  *  CV /  CP 
DPDX = 0 . 2 5 *D P D  + 0 . 75*D P D X  
W R I T E ( 1 1 , 4 6 0 )  I D W S ( J ) ,  T W S ( J ) , D,  DPDX 

0 2 0  CONTINUE
I F  ( N . G T . O )  THEN 

AAD = AAD /  N 
B IA S  =  B IA S  /  N 
RMS =  SQRT( RMS/N -  B I A S * B I A S )
W R I T E ( 3 , 4 5 0 )  N ,  AAD, B I A S ,  RMS 
I F  (N .E Q .N W S )  RETURN 

E N D IF
C

0 2 5  AAD =  0 . 0  
B IA S  = 0 . 0  
RMS =  0 . 0  
N = 0
W R I T E ( 3 , 4 2 0 )
DO 0 4 0  J  =  1 ,  NWS 
I F  ( W S P T ( J ) . G T . 0 . 0 )  GO TO 040  
W S P T (J )  =  -  W SPT(J )
CALL S A T F ( T W S ( J ) , P S , D S L , D S V )
WCAL = W S F ( D S L , T W S ( J ) )
N =  N + 1
PCT =  1 0 0 . 0  *  (WCAL -  W S P T ( J ) ) /  W SP T(J )
AAD =  AAD + AB S(PC T)
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B IA S  =  B IA S  + PCT 
RMS =  RMS + PCT *  PCT
W R I T E ( 3 , 4 4 0 )  I D W S ( J ) ,  T W S ( J ) , DSL,  WCAL, W S P T ( J ) ,  PCT 
DPDX = 1 . 0 E - 5  *  CMW *  WSPT(J )  *  W SPT(J )  *  CV /  CP 
DPDX = 0 . 2 5 * D P D  + 0 . 75*D PD X  
W R I T E ( 5 , 4 6 0 )  I D W S ( J ) ,  T W S ( J ) , DSL,  DPDX 

C CALL W S D ( T W S ( J ) , D S L , W S P T ( J ) )
0 4 0  CONTINUE

I F  (N .G T .  0)  THEN 
AAD = AAD /  N 
B IA S  = B IA S  /  N 
RMS = SQRT( RMS/N -  B I A S * B I A S )
W R IT E ( 3 , 4 5 0 )  N ,  AAD, B IA S ,  RMS 

E N D IF  
RETURN

C
4 0 0  FORMAT( ' I S I N G L E  PHASE SOUND VELOCITY C O M P A R I S O N S ' / / '  

I D  T ,  K
*  P , EXP WS, CAL WS, EXP P C T ' )

4 1 0  FORMAT( 1 5 , 2 F 1 0 . 3 , 2 F 1 0 . 2 , F 8 .3  )
4 2 0  FORMAT( ' 1 SATURATED L I Q U I D  SOUND VEL OC ITY  

COMPARISONS' / / '  I D  T 
* , K D ,S A T  WS, CAL WS, EXP P C T ' )

4 4 0  FORMAT( 1 5 , F 1 0 . 3 , F 1 0 . 5 , 2 F 1 0 . 2 , F 8 . 3 )
4 5 0  FORMAT( ' ON = ' , 1 4 , '  AAD = ' , F 6 . 2 , ' B IA S  = ' , F 6 . 2 , '  RMS 

= ' , F 6 . 2 )
4 6 0  FORMAT( ' DPDD' , 1 4 , F 1 0 . 3 , F 1 0 . 5 , F 1 0 . 2 )

END
SUBROUTINE W S D (T ,D ,W S )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , 0 - Z )
D H I  =  1 . 0 0 5 * D  
DLO =  0 . 9 9 5 * D  

0 1 0  DX = 0 . 5  * ( D L O + D H I )
WCAL =  W S F (D X ,T )
D I F  =  WCAL -  WS 
I F  ( D I F )  0 3 0 , 0 5 0 , 0 2 0  

0 2 0  D H I  =  DX 
GO TO 0 40  

0 3 0  DLO = DX
0 4 0  I F  ( A B S ( D I F ) . L T . 0 . 1 )  GO TO 050

I F  ( A B S ( D H I / D L O - 1 . 0 ) . L T . 0 . 0 0 0 1 )  GO TO 0 50  
GO TO 0 10  

0 5 0  PCT = 1 0 0 . * ( D X - D ) / D
W R I T E ( 6 , 1 0 0 )  DX, D,  PCT,  WCAL, WS 
RETURN

1 0 0  F O R M A T ( 2 F 1 0 . 5 , F 6 . 3 , 2 F 1 0 . 2 )
END
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C
FUNCTION W S F ( D ,T )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , 0 - Z )

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c 
c
C T H I S  ROUTINE CALCULATES THE SOUND V EL OC ITY
C G IVEN THE D EN SITY  AND TEMPERATURE
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c
C COMMON /R E F D A T /  R ,  PC, DC, TC,  ZC, G ( N C ) ,  GAMMA,

P T R P , DTRP, TTRP  
C *  , CMW

COMMON / R E F D A T /Z C ,  PTRP, DTRP, TTRP,CMW  
COMMON/ CONST/ T C , P C , DC , R

C
COMMON /D P D C A L /  CP, CV, DPD, DPT

C
CV = C V F ( D , T)
CALL D P D T ( D P T , D , T , 1 )
CALL D P D D ( D P D ,D , T , 1)
DPT =  DPT /  D
CP = CV + 1 0 0 . 0  *  T *  DPT *  DPT /  DPD 
WSF =  SQRT( 1 . 0E5 *  CP *  DPD /  (CMW *  C V ) )
RETURN
END

C
C

SUBROUTINE D P 2 D T 2 ( D P T , D D , T T , I D D )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , P - Z )

COMMON/CONST/TC, P C , DC, R 
COMMON/ COE/ COEF( 6 0 0 )

C O M M O N / ID N O /P ID N ( 6 0 0 , 4 )
COMMON/ DAT/MOBS, NCO, NMAX, NCON 
COMMON/ T E R M /F A C T ( 6 0 0 )

COMMON/ OLDAT/ BCOEF( 3 2 ) , B D ( 3 2 , 4 )
D=DD/DC
T = T C / T T
SUM4=0
SUM5=0
I F  ( I D D . E Q . 2 )  GOTO 12 
DO 11 1 = 1 , NCO 

P I T = P I D N ( 1 , 2 )
P I D = P I D N ( 1 , 3 )
P I D R O = P I D N ( 1 , 4 )

CALL D I F F P O ( D , T , P I T , P I D , P ID R O , DADD)
CALL D I F F T D ( D , T , P I T , P I D , P ID R O , DPDO)
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SUM4=SUM4+DADD*COEF( I)
SUM5=SUM5+DPDO*COEF( I )

11  CONTINUE  
GOTO 20

12 DO 15 1 = 1 , 1 9
B I T = B D ( 1 , 2 )
B I D = B D ( 1 , 3 )
B ID R O =B D ( 1 , 4 )

CALL D I F F P 2 T 2 ( D , T , B I T , B I D , B ID R O , D PDTV,DP2D T2V)  
SUM4=SUM4+DPDTV*BCOEF( I )

SUM5=SUM5+DP2DT2V*BCOEF( I )
15  CONTINUE
20 D P T = 2 * T * * 3 * S U M 4 + T * * 4 * S U M 5

D P T = R * D C * D * * 2 * D P T / T C  
RETURN 
END

c
c

SUBROUTINE D I F F P 2 T 2 ( D , T , I , J , K ,D P D T V , D P 2 D T 2 V )
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - Z )
COMMON/ CONST/ TC , ^ C , DC , R

d p d t v  = ( d * * ( - 1  + j ) * i * j * t * * ( - 1  + i ) / E x p ( d * * k )  -  
d * * ( - l  + j  +  k ) * i * k * t * * ( - 1  + i ) / E x p ( d * * k ) ) / t  

-  ( d * * ( - 1  + j ) * j * t * * i / E x p ( d * * k )  -
d * * ( - l  + j  + k ) * k * t * * i / E x p ( d * * k ) ) / t * * 2  

d p 2 d t 2 v  = ( d * * ( - l  + j ) * ( - 1  + i ) * i * j  * t * * ( - 2  +  
i ) / E x p ( d * * k )  -

-  d * * ( - 1  + j  + k ) * ( - 1  + i ) * i * k * t * * ( - 2  + i ) /
E x p ( d * * k ) ) / t  -

-  2 * ( d * * ( - 1  + j ) * i * j  * t * * ( - 1  + i ) / E x p ( d * * k )  -  
d * * ( - l  + j  + k ) * i * k * t * * ( - 1  + i ) / E x p ( d * * k ) ) /  
t * * 2  + 2 * ( d * * ( - 1  + j ) * j * t * * i / E x p ( d * * k )  -  
d * * ( - 1  + j  + k ) * k * t * * i / E x p ( d * * k ) ) / t * * 3

I F  ( K . E Q . O )  D P D T V = D P D T V *E X P (D * *K )
I F  ( K . E Q . O )  D P 2 D T 2 V = D P 2 D T 2 V *E X P (D * * K )

RETURN
END

C
C
C

SUBROUTINE CONSTRAIN
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c 
c
C T H I S  SUBROUTINE ADDS THE CONSTRAINTS TO THE LEAST  
C SQUARES F I T
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CC***********************************************************
C

I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , P - Z )
COMMON/D A T /M O B S , NCO, NMAX, NCON 
COMMON/ C O N ST/T C , P C , DC , R 
COMMON/TERM/FACT( 6 0 0 )
COMMON/ PROBLEM/ NCONT 
R E S = P C - ( R * T C * D C )
CALL P R E S S B ( T C , P C , D C , 0)
NCONT=l
CALL F I T ( R E S , 1 . 0 )

CALL D P D D ( D P D , D C , T C , 0)
NCONT=2 
RES= —R *T C  
DO 10  1 = 1 , NCO 

10 F A C T ( I ) = R * T C * F A C T ( I )
CALL F I T ( R E S , 1 . 0 )
R E S = 0 . 0 
NCONT=3
CALL D P 2 D D 2 (D P D 2 , D C , T C , 0)
DO 2 0 1 = 1 , NCO 

20  F A C T ( I ) = F A C T ( I ) * R * T C / D C
CALL F I T ( R E S , 1 . 0 )

RETURN
END

SUBROUTINE C R I T F ( PCC, DCC, TCC)
I M P L I C I T  DOUBLE P R E C IS IO N  ( A - H , 0 - Z )  

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c 
c
C PROGRAMMER JOLENE K. BAKER
C THERMOPHYSICAL PROPERTIES D I V I S I O N
C NATIONAL BUREAU OF STANDARDS
C BOULDER, COLORADO 8 0 3 0 3
C
C PURPOSE T H I S  PROGRAM CALCULATES THE C R I T I C A L
C PROPERTIES (TEMPERATURE, PRESSURE, D E N S IT Y ,  Z)
C FOR A PURE F L U I D .  THE C R I T E R I A  USED FOR
C CONVERGENCE I S :
C
C ( 1 )  F IR S T  D E R IV A T IV E  OF PRESSURE
C WRT D E N S ITY  = 0 .
C
C ( 2 )  SECOND D E R IV A T IV E  OF PRESSURE
C WRT DEN SITY  = 0 .
C
C



n 
o 

o 
o 

o
o

o
 

o
o

o
o

o
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SET BOUNDS ON C R I T I C A L  TEMP. / C R I T I C A L  DEN SITY

J  = 0
T H I  = 1 . 0 5 *T C C  
TLO =  0 . 9 5 * T C C  

3 D H I  =  1 . 1 5 * D C C  
DLO = 0 . 8 5 * D C C  
J  = J  + 1
I F ( J  .G E .  5 0 )  GO TO 50

START TEMP. IT E R A T IO N  

T =  ( T H I  + TLO) *  0 . 5

1 =  0
START DEN SITY  IT E R A T IO N

5 D =  ( D H I  + DLO) *  0 . 5
1 =  1 +  1
I F ( I  .G E .  5 0 )  GO TO 25
CALL P V T F ( P , D , T , D P D D ,D 2P D D 2 , GO)
I F ( A B S ( D 2 P D D 2 ) . L E .  1 . 0 E - 8 )  GO TO 20  
I F ( D 2 P D D 2 ) 1 0 , 2 0 , 1 5  

10 DLO = D
GO TO 5 

15 D H I  =  D
GO TO 5

20  I F ( A B S ( D P D D )  . L E .  1 . 0 E - 8 )  GO TO 50
25  I F ( D P D D )  3 0 , 5 0 , 3 5
30  TLO =  T

GO TO 3 
3 5 T H I  =  T

GO TO 3 
50  I F ( D P D D )  3 0 , 6 0 , 6 0
60 TCC = T

DCC =  D
PCC = P
W R I T E ( 3 , 1 0 0 )  PCC, DCC, TCC 

1 0 0  FORMAT( ' 1CONSTRAINED RESULTS WITH P C = ' , F 9 . 4 , ' ,  
D C = ' , F 6 . 3 , ' AND T 

* C = ' , F 8 . 3 )
RETURN
END


