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ABSTRACT

The algorithms for the Fourier theoretical solutions
of the One-way and Two-way non-reflecting wave equations
are presented. The Fourier theoretical method calculates
exact spatial derivatives in the spatial frequency
(kx,kz) domain, and the time derivatives are calculated
by using conventional one-dimensional finite difference
schemes. The Fourier theoretical approach requires fewer
spatial grid points than full three-dimensional finite
difference methods (X,Z,t). Therefore, it is believed
that the Fourier theoretical method will be more efficient
for both forward (exploding reflector) and inverse
(Reverse time migration) modeling.

The Fourier theoretical approach for the One-way
wave equation is tested against five earth models: a
point diffractor in a homogeneous medium, a point
diffractor in a vertically layered medium, a fault block
model, a syncline model, and an anticline model. The
models are used in both the forward and inverse modeling
examples. The results are accurate for all models when

compared to the known solutions.
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INTRODUCTION

Since exact analytical solutions to the elastic/
acoustic wave equation do not exist for most subsurface
models of geologic interest, the need for numerical
approximations to the wave equation has been of concern
to the geophysical community for some time. The numerical
approximations are used in applications of forward and
inverse modeling. A great deal of time and effort is
being dedicated not only to the derivation of algorithms,
but also to their implementation on high speed digital.

Until recently, finite difference schemes have been
one of the most popular ways of representing the wave
equation numerically. Unfortunately, conventional finite
difference schemes are limited because of problems with
spatial aliasing. Depending on the scheme used, the grid
size must be considerably smaller than the shortest wave
length component under consideration. The error is in part
due to numerical truncation, which tends to dominate the
shorter wave lengths. This problem manifests itself in
the numerical solution as grid dispersion.

A number of finite difference schemes have been

proposed to help alleviate such numerical problems. 1In
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recent years, very sophisticated schemes have been developed
at Los Alamos to map expanding wave fronts in nuclear blasts.
Many of these schemes use dynamic grid sizes. The grid
spacing changes as the wave fronts progress throuch the
model,

A second approach is to evaluate the spatial deriva-
tives analytically. By considering the solution of the
wave equation as a complete set of orthogonal basis
functions, it is possible to compute the exact derivative
of the composite function. Numerically, the Fourier
Series (the Fast Fourier Transform) is ideally suited for
this task, and a method known as the Fourier theoretical
approach (Kosloff, 1982) takes advantage of this.

This thesis analyzes the Fourier theoretical approach
with applications to both forward and inverse modeling.
This method is applied to both One-way and Two-way non-
reflecting wave eguations. Because of the simplicity of
the wave equation involved, the One-way equation is
ideally suited to evaluate the capabilities of this
algorithm. This approximation has been implemented to
demonstrate the advantages and disadvantages of the Fourier
theoretical technique. The Fourier theoretical solution

to the Two-way non-reflecting wave equation is derived to
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demonstrate the capability of applying the technique to

more sophisticated forms of the wave equations.
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FUNDAMENTALS OF THE FOURIER THEORETICAL METHOD

General Theoretical Development

Although finite difference schemes are one of the
most elegant and straight forward ways of rebresenting
the wave equation numerically, the applications of such
algorithms have been limited due to an inherent problem.
In most cases, the grid spacing (the spatial sampling rate)
in X and Z is severely limited due to stability considera-
tions, and improper choices of grid spacing result in
errors which propagate due to numerical truncation of the
shortest wave length components. In most cases the minimum
spatial sampling rate needs to be at least twelve nodes
for the shortest wave length. However, in many applications
25 nodes per shortest wave length are used to avoid grid

dispersion:

amin = YD, yrmay < MR (1)
Amin = shortest wave length;
fmax = maximum frequency content of data;
Vmin = minimum velocity;

Armax= maximum allowable grid spacing.
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In modeling, a fine grid spacing, while increasing
the physical size of the finite difference solution, is
not a problem, as it is simple to resample to a larger
grid spacing once the solution is computed. In migration,
however, since our X-grid spacing (the horizontal spacing)
is set during acauisition, it is highly undesirable to
resample to a larger grid spacing because recorded events
may be spatially aliased. The Fourier theoretical
technique is better suited for this purpose, since this
method is independent of the spatial sample rate.

In this paper, the acoustic wave equation is used
to evaluate the Fourier theoretical technique. Consider

the acoustic wave equation of the form

P(X,2,t) = V(X,2)°V?P(X,2,t) (2)
(see Appendix A)
where P is the wave field representing the pressure, t
is the time of propagation, and X and 7Z are the horizontal
and vertical distances, respectively. If the media
represented by P(X,Z,t) is considered to be homogeneous
(constant velocity V), then the solution of the above wave

equation can be written as a Fourier series (Gazdag, 1981).
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~

P(x,z,t) = £ I I ﬁ(kx,kz,w)el(kxX+kzZ_wt) (3)

Summing over all kx's, kz's and where P(kx,kz,m)
is the three-dimensional Fourier transform of P(X,Z,t).
This formulation implies that the pressure field P(X,Z,t)
must be band limited to nyguist, and that it becomes
periodic in X and Z. A band limited system assumption
does not cause any problem, but considering the
model periodic, could result in undesirable artifacts.
Since the solution of the wave equation can be written
as a Fourier series in X and Z, it is possible to compute

the spatial derivatives in the (kx, kz) domain.

An Example of the Fourier Theoretical Approximation

Starting with the acoustic wave equation

P = v(x,2)%v%p , (4)
the goal is to approximate the solution with a finite
difference scheme in time and a Fourier theoretical
approximation in space. A classic form of approximating

the second derivative explicitly is

a®P(t) _ P(t+At)=2P (£)+P (t=At)

’
at? At?

(5)
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where
1. P(t-At), P(t), and P(t+At) are three consecutive
wave fields in time;
2. At is the time sampling interval;
3. The error in this approximation is of the order
0(at?) .
Using equation (5), the forward numerical solution is

2y2v?p (¢ | (6)

P(t+At) = 2P(t)-P(t-At)+At
which is an approximation of the pressure field at
P(t+At) related directly to P(t) and P(t-At). By using
the relationships in equation (3), the pressure field

can be represented as a Fourier series. The second deriva-

tive of the pressure field is then represented by

V2P <o = (k 24k )P (k_,k_,w)er KXtk 2-u0t) 4,
X A X A

Therefore, the solution of the acoustic wave equation
involving a one-dimensional finite difference in time and
a Fourier approximation of the derivatives in space is
a combination of equations (6) and (7).

In theory, this type of approximation to the solution

of the wave equation should be identical to that of full
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two-dimensional (¥,2,t) finite difference approximations.
In this case, the spatial finite difference equations are
substituted by a hybrid scheme which uses a Fourier domain
approximation of the second derivative. This numerical
solution to the derivative is exact within the frequency
bank of the spatial mesh (Kosloff, 1982), implying that for
the given frequencies the derivatives will be numerically

accurate.

Theoretical Development of the One-Way Wave Equation

The relationships in equations (6) and (7) can be used
in place of conventional finite difference schemes for for-
ward modeling if multiples are desired. 1In seismic applica-
tions, however, it is desirable to be able to separate
the upward and downward traveling waves to eliminate
multiples which would hinder inverse modeling solutions
(Claerbout, 1976). Since the direction of propagation of
the wave front is controlled by the wave vector (kx,kz) and
its temporal frequency (w), upward and downward traveling
waves can be separated by the dispersion relationship in
the frequency wave number domain if the velocity v in the
medium is assumed to be constant:

w? = (k 4k P)vE. (8)

(see Appendix B)
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By taking the square root of both sides of equation (8)

2y %y, (9)

w = *(k_+k
X z
the ﬁpward and downward traveling waves are separated.
When the dispersion relationship in equation (9) is applied
to tle acoustic wave equation, the sign will control the
direction of travel, and since the restriction of waves

traveling in one direction only needs to apply in the =z

direction

k
w = vk | 1+ EE (10)

or

w = ngn(kz)(k +k _7) (11)

X z
where if the wave number vector is given by K = kx§+k22 then
1. kZ<O: each wave component is displaced in the

direction of its wave number vector;
2. kz>0: each wave component is displaced opposite
of its wave number vector.

Since it is known that

im§ ; ﬁ(X,Z,w)
transforms to

= 7 P(X,Z2,t)
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by using equation (11l) in the case of a constant velocity
field (homogeneous earth) the One-way wave eguation is

derived in the Time-wave-number domain (SAL, 1983):

— -
L =i vsgn (k) (x, +k )P . (12)
In the spatial domain equation (12) is
dap _ -1[ 2, 2.0k +1
3t = V., [ i sgn(kz)(kx +kz ) L (P)]/ (13)

where ng+l and sz—l are the forward and inverse two-
dimensional spatial Fourier transform operators respectively.
Unfortunately since the multiplication factor,
i sgn(kz)(kzz+kxz)%, cannot be represented in the (X,Z)
domain, the forward and inverse two-dimensional transforms
will have to be evaluated for each time step.
Implementation of equation (13) for each time step
is summarized as follows:
1. Take the spatial two-dimensional Fourier
transform of P(X,Z,ti);
2. Multiply by the one-way derivative operator;
3. Take the inverse two-dimensional Fourier
transform of P(kx,kz,ti);

4. Multiply by the velocity field V;

5. Resulting in 4dp/dt.
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Limitation of the One-Way Wave Equation

The One-way wave equation is obtained from the
acoustic wave equation. Because of this, it is affected
by the set of assumptions made in the derivation of the
acoustic wave equation. The initial assumption made is
that the acoustic wave equation assumes an isotropic
fluid with zero viscosity. Assuming a fluid medium
restricts the solution only to compressional waves.
While this assumption reduces the validity of the solu-
tions, the primary data of interest in seismic applications
is that of compressional waves. In areas of complex
geology (high velocity gradients and complex geologic
structures), where shear waves and converted waves give
important information, the solution from the field
assumption may not be accurate enough. The next assumption
is done to obtain linear relationships between pressure
and particle velocity from the non-linear forms. It
can be shown (Berkhout, 1982) that this assumption is
valid for practical seismic velocities. The final
assumption made in the derivation of the acoustic wave
equation is that Vlnp is zero. Ignoring inhomogeneity

in density is a common assumption made in many seismic
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applications. However, in the derivation of the
acoustic wave equation, two fundamental acoustic
parameters are compressibility (K = bulk modulus) and
density (p). Both parameters determine the acoustic

velocity

v =\ /—EE .
p

Therefore, if we neglect the density term VP-Vlnp, it
does not mean that the influence of variable density
is ignored. 1In fact, the effect of density on a seismic
wave is included in the velocity field (Berkhout,
1982).

The second set of assumptions affects the final
solution in a more severe manner. In the derivation
of the One-way wave equation, the velocity field is
transformed into the wave number domain. To do this,
a homogeneous velocity is assumed. If the One-way wave
equation could only work for homogeneous velocities,
this would be unacceptable. However, in the final form
of the wave equation, an inhomogeneous velocity field
is allowed. While physically this is incorrect, in

practice it is shown that as long as the velocities

12
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vary slowly throughout the model, the times of propaga-
tion of the wave fronts are correct.

The wave equation in the form of equation (13)
is an ordinary differential equation which can be
solved by any standard numerical method. Because of
the assumptions made during the derivation of the
One-way wave equation, it is not necessary to use some
of the highly accurate finite difference schemes
(Runga Kutta), and hence two simple schemes are con-

sidered.

Taylor Series Approximation

Gazdag (1981) proposes to use a Taylor series

approximation

g a°P(t) | At”

P (t+At) = =
n 23t :

(14)

to solve equation (13), This term gains accuracy as
more terms are considered. By using the first four

terms,
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2 2 3 3

P(t+At) = P(t)+33At+a P A? + 8°P é1,:-—+0(At4) (15)
ot ot 27 Bt3 3!

and a recursive method to solve the higher order deriva-

tives

-1
a"s _ -1 |. 2 . 2. % +1/a™p
2= = V(x,z)FXz [1 sgn(kz)(kx +kz ) Foy [dtn—l}} (16)

the One-way wave equation is solved. If this scheme is
implemented it would involve six full two-dimensional
transforms per time step. Because of the expense of the

Fourier transform this would not be a viable alternative.

Centered Difference Apvroximation

Instead of evaluating higher order derivatives, it
would be more appropriate to approximate the first
derivative with a lower order scheme but take smaller
time steps. Kosloff (1982) proposes to use a centered

difference scheme

dPn _ Pn+1_ n-1

dt 20t ' (17)

where P" = P(nAt)
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to approximate the first derivative. In fact, because
of the approximations made in deriving the One-way wave
equation, the accuracy of the centered difference scheme
is sufficient to get a good solution. It is this
algorithm which has been implemented for both modeling

and reverse time migration.

Implementation of the One-Way Wave Equation

The One-way wave equation

dp -1 . 2 2. % +1
_— = v X E' n k k +k
(x,2) Xz [l sgn ( z)( X z ) sz

(P(x,z,t))] (18)

as previously discussed, is a simplified form in which spatial
derivatives involving the velocity are ignored. While it

may seem that this a gross approximation of the wave

equation, since a Taylor series was not used to derive this
solution, there is no restriction on the angles of dip it
should be able to handle. It is because of this that it is
called the ninety degree wave equation. As long as the

velocity gradient is not too large, the wave field will be

correctly reconstructed.
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Forward Propagation

By using an explicit centered difference approximation
to the first derivative,
n+1 ap"

— Pt n—
P = 2At It + P

1 (19)

and by combining equations (18) and (19), the first time
derivative can be related to the spatial derivatives
numerically.

In the implementation of equation (19), there are

several factors which must be considered.

Stability

While there are no severe restrictions on the spatial
derivatives because of the Fourier theoretical approach,
there is a relationship between the spatial sampling rate
and temporal frequency spectrum. This restriction is a

nyquist~like relationship,

Vmin
2fmax (20)

Armax <
which means that there should be at least two spatial
samples for the shortest possible wave length. By re-

stricting the frequency spectrum of the source wavelet,

it is possible to increase the grid spacinag to an allowable
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amount. Because of the accuracy of the derivatives
computed in the wave number domain, the stability restric-
tion is different from that of a normal finite difference
scheme (equation (1)).

The other stability requirement, due to the finite
difference in time, is that of the size of the time
step. It can be shown that for the centered difference

scheme, the time step has to be

Ax
Y2 mVmax (21)

At <

if Ax = Az (see Appendix B).

Therefore, before modeling is done, the source
function has to be resampled to a sample rate less than At.
To do this resampling, I chose a sin(x)/xX interpolation
scheme. The interpolation is done in the frequency domain
by padding the spectrum with zeros and doing an inverse
transform back to time. This type of interpolation
guarantees that the frequency spectrum of the original
data will remain unchanged.

Once the grid spacing is determined and the source

function is resampled, the pressure field can be propagated

through the earth. By using an exploding reflector
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approximation (see Figure 1), the source function is
inserted along any boundary which is to be mapped into
time. As time progresses, the source function is
continuously added into the boundaries. Then, as the
wave propagates through (X,Z2), it can be mapped into

time at Z = 0.

Numerical Dispersion

In the Fourier theoretical method, the spatial
derivative operator is accurate for any pressure
field within the freguency band of the spatial mesh.
If the source function S(x,t) has the appropriate
frequency spectrum, then errors in the numerical solu-
tion will come from the inaccuracy of the time derivative
(the finite difference) approximation. The error appears
in the solution as numerical dispersion. Unlike con-
ventional finite differences (Alford, 1974), dispersion
diminishes rapidly as the size of the time step is
decreased. At the stability limit for the one-dimensional

case,

VAt
Ax

where o =

v2 (22)

18
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the numerical dispersion is considerable. However,

as the time step is decreased, the effects of dispersion
will almost disappear. When a = 0.2, there is almost no
numerical dispersion for all frequencies in the band of
the mesh.

Comparing the dispersion relationships calculated
by Alford (1974) for normal finite difference schemes of
the acoustic wave equation (see Figure 2) to those of
the Fourier theoretical approach (see Figure 3; Kosloff,
1982), the Fourier approach will have much smaller errors

for the same a.

Boundary Conditions

The periodic nature of the Fourier method can cause
problems when considering boundary conditions. True
absorbing boundaries are very difficult to design in
the wave number domain, therefore to simulate absorbing
boundary conditions the velocity field around the edges
is slowly tapered to zero. This boundary condition, while
not a true absorbing boundary, behaves nicely as long
as the gradient of the taper on the velocity field is

small.
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Figure 2. Dispersion relationships of a second order
finite difference scheme for the homogeneous
wave equation for different ratios of «o
(Alford, 1974).
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One-way wave equation for different ratios

of a.

22



T-2921 23

Another way of eliminating the "wrap around" problem
of the periodic boundary condition is done during the
construction of the spatial mesh. The spatial grid for
the Fourier theoretical approach has to be large enough
to insure that the "critical" events will arrive before
the "wrap around”, due to the periodic boundary conditions,

occurs.

Reverse Time Migration

Migration in Reverse time (Baysal, 1982; see Figure 4)

uses the same algorithms and stability requirements as

the exploding reflector modeling procedure. There are
only two differences. The first is that, instead of
picking a grid spacing according to the frequency content
of our data, the data is filtered relative to the set

grid spacing in X. It is better to filter the data in
time than to resample it in X because of problems with

events which are spatially aliased. From equation (20),

1
Ar = (Ax2+A22)2 and if Ax = Az,

fmax < _ymin R (23)

V2 mAr
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the maximum allowable frequency for a given grid spacing
is obtained by filtering the input data back to the
maximum allowable frequency that the stability criterion
will allow. The filtering has to be done before the
migration because instabilities due to spatial sampling
will appear as periodic components due to aliasing, and
will corrupt the solution in a manner which cannot be
corrected after the fact.

The second difference is the way the boundary condi-
tions are handled. In the case of modeling, the surface
time response is the unknown. However, in migration,
the time response along the Z = 0 axis is known for all
time, but the depth response at t = 0 is not. By stepping
backwards in time using

n-1 _ n+l ar?

and equation (18), the wave field in depth is reconstructed

back until t = 0.

Problems
The one problem that exists with both the modeling
and Reverse time migration algorithm for the One-way

wave equation is inherent in the derivative factor which
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is used to multiply the spatial frequencies. To understand
this problem, it is necessary to analyze the derivative
operator

1
i sgn(k) (kX2+k22) :

(25)
which can be divided into two distinct parts. The first
part
2 2, %

(kx +k ) (26)
is a two-dimensional form of a first derivative. It is
not a smooth operator; it has slight discontinuities in its
derivative along the spatial nyquist frequencies and at
kX = kz = 0 (the absolute DC point in a two-dimensional
Fourier domain). These discontinuities are very small, and

while they may cause slight Gibb's phenomena, it does not

affect the solution. The second part

i sgn(k,)) (27)

is a Hilbert transform operator. During early time in
the modeling, when the spatial wave field is almost zero
and spikes are being forced in as source/boundary condi-

tions, the side lobes after the inverse spatial transforms
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are very large. The large side lobes create what appears

to be vertical plane waves which give a time domain response
very similar to that of a direct wave. Unfortunately,

the exploding reflector model does not give a direct wave
response. It is interesting to note that the "vertical
plane waves" are not apparent in Reverse time migration,
because, unlike single point diffractors, the response is
defined over all space (all X) on the surface (z = 0).

This impedes the vertical plane waves from forming.

The Two-Way Non-Reflecting Wave Equation

The acoustic wave equation obtained for a variable

velocity and density field is

pV~(b]1VP) =17 (28)

<|H
N]

(see Appendix 7)
To obtain the Two-way non-reflecting wave equation,

constant impedance across any boundary is assumed:

pV = constant » (29)
When equations (28) and (29) are combined, the result is
a Two-way non-reflecting wave equation where the reflection

coefficient at normal incidence is zero:
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2
) oP 9 op _ 9P |
V-g{-[ VE{-} + VS—EI:VEJ = _atz (30)
(Baysal, 1984)
By using the Fourier theoretical approach in space,
and a finite difference in time, this form of the wave

equation can be implemented. The second derivative in

space is approximated by

+1 n, n-
ap P -2P+P . (31)

This time, however, the spatial derivatives are implemented
in a slightly different fashion. Looking at the one-
dimensional case, the wave equation involves two first
derivatives in space and a second derivative approxima-

tion in time,

*1px,z,1)) }}

3 3P | _ -1 [, oo+ -1,..
V§§ [Vgg} —V(x,z)Fx [thFX {V(x,z)Fx (1kXFx

(32)

1 -1 . . .
and Fx are one-dimensional forward and in-

where Fx'
verse Fourier transforms.
The Fourier theoretical solution of this wave eguation

involves a series of one-dimensional Fourier transforms,

which are easier to implement than a two-dimensional one.
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There is great potential in this form of the wave equation,
especially for migration, because in theory it would have

no dip or velocity gradient limitations.

Implementation of the Two-Way Non-Reflecting Wave Equation

The Two-way non-reflecting wave equation

3%p _ 5 [.aP 3 [P

— = V§§-[V§§i]+ V§§'[V§§] (33)

ot
is a more accurate form than the One-way wave equation
to apply to the exploding reflector concept for both
the forward and inverse problem. The Two-way non-
reflecting wave equation simultanebusly allows both up and
down going waves. In a homogeneous medium it is identical
to the acoustic wave equation. However, when propagating
from one medium to another, the wave equation has a zero
reflection coefficient for a normal incident wave (see
Appendix C). Hence the name Two-way non-reflecting wave
equation. While this may seem in contradiction to the
exploding reflector concept, unlike the One-way wave
equation, it allows the model to approximate the wave field

in very high velocity gradients.
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In a comparison between the One-way wave equation and
the Two-way non-reflecting wave equation, the differences
become apparent. The model is an overhanging fault block
of 3000 ft/sec, imbedded in a linear velocity gradient
medium increasing 4.4 ft/sec per foot from 2000 ft/sec
to 24,000 ft/sec (see Figure 5). The One-way wave eguation
in an exploding reflector approximation, because there is
only upgoing waves, cannot properly model the wave front
which is propagating through the high velocity gradient
layer (see Figure 6). What should really be happening
is that the wave front generated by the fault plane initially
travels downward and is then turned around by refraction
and will propagate to the surface. This is correctly
modeled by the Two-way non-reflecting wave eguation (see
Figures 7 and 8).

The non-reflecting wave equation is conceptually
easier to implement than the One-way wave equation and the
method of applying this form of the equation by using
the Fourier theoretical technique will be demonstrated

with the one-dimensional form:

2
3°p 9 [ ap]
L= vi-|ves (34)
Bt2 X 90X
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VELOCITY GRADIENT MODEL
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Figure 5. The velocity gradient model used to test the
effects of high velocity gradients on the One-way
wave equation.
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where P is the pressure field and V(X,Z) is a spatially
varying velocity field. The second derivative in time

is approximated by the explicit finite difference approxima-
tion in equation (31), which is a second order (O(ATZD
accurate scheme.

The spatial derivatives are implemented in the
Fourier domain. Taking equation (34), it is necessary
to

1. Transform the pressure field by a one-

dimensional Fourier transform;

2. Multiply by the first derivative operator (ik);

3. Do an inverse transform;

4. Multiply by the velocity field;

5. Again transform the field to the Fourier domain;

6. Multiply by the first derivative operator;

7. Inverse transform;

8. Multiply by the velocity field.

It is apparent that the Two-way non-reflecting wave
eguation is taking a derivative of the velocity field

as well as derivatives of the pressure field. 1In two
dimensions the spatial derivatives would be approximated

by
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-1f. +1 -1, +1
V(x,z)Fx [lkxe (V(x,z)FX {1kXFX (P)}ﬁ +
V(x,z)Fz—l[ikze+l(V(x,z)Fz_l{ikze+l(P)}4 =
2
3—% (36)
t

)

Stability

As in the One-way wave equation, the only stability

restriction in space is the nygquist relationship

fmax < g%%ﬁ . (37)

The second derivative in time, however, will give a

different stability relationship for the finite difference:

VmZXAt < M2 ey = as. (38)
X ™

It will be necessary to resample the data in time. The
stability criterion is twice as large as the constraint

for the One-way wave equation (see Appendix C).

Boundary Conditions and Numerical Dispersion

It is not necessary to discuss the boundary conditions
and dispersion relationships (see Appendix C) as they are

also very similar to those of the One-way wave equation.
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Problems

The problem which plagues the Two-way non-reflecting
wave equation is not a numerical but computational one.
Instead of involving two two-dimensional transforms, it
entails four forward and four inverse transforms. The
amount of computations can cause a number of application

problems.

The Numerical Two-Dimensional Fourier Transform

The limiting factor in the Fourier theoretical
method is the ability to take two-dimensional transforms.
This operation is done thousands of times in the simplest
form of the hybrid scheme, therefore it is necessary to
develop a scheme which is fast and efficient relative to
memory usage and I/O0. Because computers have a finite
memory, it is necessary for the two-dimensional Fourier
transform to be computed with a method which stores most
of the data out of core. There are two such schemes
which I have implemented.

The first assumes that the data is stored so that
one of the directions is stored contiguously (columns)
on a mass storage device. First the values are transformed

using system FFTs. The non-contiguous element (row)
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transforms are done by considering each column as a array
Vi. During a row Fourier transform operation, every
element in array Vi will have the same operation done
to it... eg: the complex scale factor is the same for
every element in Vi. Because this form of the two-
dimensional FFT is I/O bound, it is ideal for a vector
processor where the access time to the mass storage device
is very fast.

The second algorithm of computing two-dimensional
FFTs is proposed by Gazdag (SAL, 1983). The data is blocked
into small equal subsets. The idea behind the algorithm
is to reconstruct the contiguous elements of the vector
on the "fly" and then use the system FFTs in both directions.
This form of the two-dimensional FFT is not I/O bound
as the transfers can be coded very efficiently. However
the coding is very complicated. If memory size is severely
restricted (such as in a FPS-100 array processor) this is

the way to do the two-dimensional transform.

Computational Problems of the
Fourier Theoretical Technigue

The Fourier theoretical method for solving partial

differential equations is a very powerful method to
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accurately approximate derivatives. However, until
recently, it was not considered as a viable alternative
to the more cumbersome finite difference technigues.

The reason will become more apparent as I use the One-way
wave equation as a case history. The algorithm for the
One-way wave equation can be divided into two distinct
operations:

1. Preprocessing the data... Filtering and re-

sampling in time to compensate for the
stability and dispersion due to the finite
difference in time;

2. Implementation of the hybrid finite difference

scheme.
The preprocessing of the data is necessary but is a standard
one time process and does not cause any undue computational
problem.

The second step, implementing the One-way wave equation
as in equation (18), can be divided into five distinct
steps per time increments:

1. A forward two-dimensional Fourier transform;

2. Multiplication by the one-way propagation

operator;

3. An inverse two-dimensional Fourier transform;
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4. Multiplication by the velocity field;
5. Finite difference addition.
While very simple in nature it is necessary to look at
the number of operations involved in the above five
steps.
Assuming an N by N grid
1) The most efficient and fast way to approximate the
Fourier transform is through the Fast Fourier transform
(FFT). This is an N * log(N) operation. Therefore,
for one two-dimensional FFT it would involve
N rows * (N*log(N))+
N columns?* (N*log(N))
operations.
2) Multiplication by an N*N point grid for the One-way
propagation operator:
N sguared operations.
3) Inverse two-dimensional FFT:
N rows * (N*log(N))+
N columns* (N*log(N)).
4) Multiplication by an N*N point velocity field:
N squared operations.
5) The finite difference addition:

N squared operations.

40
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The total number of operations is
4*N2*log(N)+3*N2

Taking a small grid of 512 by 512 grid points, the total
number of operations by time step is on the order of
10.2 million operations. If there was five seconds of
data and a time step of one millisecond (5000 time steps),
the total number of operations involved would be a phenom-
enal 51 billion.

The second problem inherent in Fourier techniques is
of the same order of magnitude. The hybrid scheme involves

six distinctly different matrices on which operations

are done

+1 n-1
V(x,2), D(k_,k,), p®, P77, P, work (k k)

Each of the matrices are complex valued (2*N2 in size).
The total number of words required in the case of the
512 by 512 grid would be 3.1 million words.

Because of these two problems the Fourier theoretical
technique has not attracted attention until recently. With
the advent of super digital computers and array processors

this technique is becoming a viable process.
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KESULTS OF FORWARD AND INVERSE MODELIN®G

To investigate the Fourier theoretical method, a
series of experiments are done by using the One-way wave
equation. In the case of modeling an exploding reflector
approximation is assumed, and for migration, Reverse
time migration is used. The initial tests involve a single
point diffractor with various configurations of velocity
fields. The last three experiments are done with three
complex earths: a fault block model, a syncline, and an
anticline. In the three cases the Reverse time migrations

are done with both correct and incorrect velocity models.

Point Diffractor

Forward and Inverse Modeling in a Homogeneous Medium

Initially, a homogeneous earth is used to test propaga-
tion of a point source in the earth. The first model
is a seventy hertz point diffractor buried at a depth of
about 3800 feet in a 10,000 ft/sec velocity medium in a
101 by 101 depth model grid (see Figure 9). The wave
fronts as a function of space are shown for progressing
time in the forward and inverse problem (see Figures 10-12,
14-17). The final migrated section is in depth (see

Figure 18).



T-2921 43

Observations of a Point Diffractor in a
Homogeneous Medium

In the forward modeling depth snap shots (see
Figures 10-12), the wave fronts are very well defined.
There is no apparent loss of freguency with angle except
for a geometric rotation effect of (f cos (6)). The FFT
buffers in this case are of size 512 by 512. It is
apparent only in the time representation that though
the wrap around effect has not been completely eliminated,
it has been substantially reduced and is not affecting
the solution (see Figure 13).

In the Reverse time migration, the snap shots show
an interesting aperture problem. To reconstruct the
full conical wave front, an infinite hyperbola in time
is necessary. Since we do not have such a solution, the
full conical wave fronts cannot be formed by the migration
(see Figures 13-17). Because of this, the pure spike
in the X direction can never be reconstructed. However,
it is obvious from the results (see Figure 18) that
this should cause little problems, because in most cases

migration will always be done over much larger apertures.
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Figure 9. Point diffractor model in a homogeneous earth.
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Figure 10.
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101

Depth snapshot during early time. The tails

at the edges of the conical wave front cause the
wrap around problem apparent in the Fourier
theoretical technigue approximation of the
One-way wave equation.
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Figure 11. Depth snapshot of the pronacating wave front
due to a point diffractor just before the wave
front arrives at the surface.
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Figure 12. Depth snapshot of the propagating wave front
due to a point diffractor just before the wave
front arrives to the surface.
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Time section of the point diffractor in a
homogeneous medium. The slight straight line
artifact is a result of the wrav around effect
due to the One-way wave edguation.
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MIGRATION OF A
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Figure 14. Depth snapshot of the collapsing wave front
during Reverse time migration at late time
(in Reverse time migration, time regresses).
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Figure 15. Depth snapshot of the collapsing wave front
during Reverse time migration at TO-100 msec
of one-way time.
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Figure 16. Depth snapshot of the collamsing wave front
during Reverse time migration at TO-200 msec
of one-way time.
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Figure 17. Depth snapshot of the collapsing wave front
during Reverse time migration at TO-30N0 msec
of one-way time.
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Figure 18. Reverse time migrated point diffractor mapved
in depth. Loss of the true point diffractor
is due to the "aperture" nroblem of depth
migration.
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Forward Problem in a Vertically Layered Medium

To test the effect of lateral velocity variations
on the One-way wave equation solution, a forward model is
constructed with three egual vertical layers. The
velocities from left to right are 8000, 10,000, and
12,000 ft/sec. A point diffractor is buried at a depth
of 3800 ft at CDP 51 using a 70 hertz wavelet with a
50 foot spacing in both x and z in a 101 by 101 grid.
The forward model with a series of snap shots is shown

(see Figures 19 and 20).

Observations of a Point Diffractor in a
Vertically Layered Medium

The example clearly shows that horizontal velocity

variations do not distort the solution. All the travel

times along the wave fronts are correct and again the only

54

loss of frequency is due to the geometrical rotation effect.

There is also an interesting effect due to the "two-way"
nature of the One-way wave equation in the x direction.
The transmitted wave front, the primary wave, travels
through the boundaries. At the same time there is also

a reflection off the boundaries (see Figures 19 and 20).
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Figure 19. Depth snapshot of the voint diffractor in a
vertically layered medium.
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Figure 20. Depth snapshot of the voint diffractor in a
vertically layered medium. The reflections in
the horizontal direction are due to the "two-way"
nature of the One-way wave equation in the
horizontal direction.
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Fault Block Model

Forward and Inverse Problem

The purpose of this model is to determine the ability
of the technique to handle dipping events. The fault
block model is made up of an overburden of 8000 ft/sec,
followed by a 10,000 and a 12,000 ft/sec layer respectively.
The flat layers are distorted by a 1000 foot slip at about
CDP 51 (see Figure 21). The source wavelet is a Ricker
wavelet with a peak in the amplitude spectrum at about
35 Hertz. The boundaries are treated as a series of point
diffractors and the source wavelet is added at each diffrac-
tor for every time step. The Reverse time migration is
done for three separate velocity models. This is done to
test Reverse times sensitivity to the depth model. The
first model is done with the correct velocity field
(see Figure 30). The second and third migrations are done
using an anticline (see Figure 33) and a syncline (see

Figure 29) models to migrate the fault block.

Observations of the Forward and Inverse Fault Block Model

The wrap around effects which caused problems in

the point diffractor models are no longer apparent when
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full line-like sources are used. This is because much of
the wrap around effect is canceled out by the adjacent
sources. In the Reverse time migration the fault plane is
very well imaged (see Figure 30).

The two examples of migration with incorrect
velocity fields show the robustness of the Reverse time
migration. The migrated depth model is well defined in
both cases. There are slight distortions in the fault
plane as well as the underlying flat layer, but from
an interpretational viewpoint the fault plane is still

very well imaged (see Figures 32 and 34).
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FAULT BLOCK MODEL

—_ b=
0 - v —
1600 8,000FT/SEC
-
m
) 2000 I
__4 M
L
3000 10,000FT/SEC
T I
AR S TR
4000 | 12,000FT/SEC
T Ji' H‘ l’ |‘i]
IR
D 1!{!
5000 n‘l!l.!!ul. il

Figure 21. Fault block model used to test the Fourier
theoretical technicue's abilitv to handle
sharp corners in a model.
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Figure 22. Depth snapshot of the exnloding reflector
fault block model.
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Figure 23. Depth snapshot of the exploding reflector
fault block model.
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Figure 24. Depth snapshot of the exploding reflector
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Figure 26. Depth snapshot of collapsing wave fronts
during Reverse time migration.
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Figure 27. Depth snapshot of collapsing wave fronts
during Reverse time migration.
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Figure 28. Depth snapshot of collapsing wave fronts

during Reverse time migration.
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Figure 29.

Depth snapshot of collapsing wave fronts
during Reverse time migration. These displays
can be used to study where migrated events
come from in complex geoloaic structures.
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MIGRATED FAULT BLOCK MODEL
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Figure 30. Reverse time migrated fault block done using
the exact velocities.
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MIGRATION OF FAULT BLOCK MODEL
WITH INCORRECT STRUCTURE
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Figure 31. Syncline model used to migrate fault block.
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Figure 32. Reverse time migrated fault block done using
the syncline model velocities.
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Figure 33. Anticline model used to migrate fault block.
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Figure 34. Reverse time migrated fault block done using
the anticline model velocities.
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Anticlinal Model

Forward and Inverse Problem

The model is an anticline with a flat underlying
layer. The purpose of this model is to test the ability
of the Fourier theoretical technique to handle a structure
which disperses energy. The model consists of an overlying
burden of 8000 ft/sec, a 10,000 ft/sec layer, followed
by a 12,000 ft/sec "half space". The boundary between
the 8 and 10 thousand ft/sec layvers makes up the anticline.
The anticline is centered about CDP 51 and has a relief
of almost 3000 feet (see Figure 35). The migrations done
are to show a possible "aperture" problem in depth migration
(see Figures 42 and 43). Also there is an example of

migration with the incorrect velocity field (see Figure 44).

Observations of the Forward and Inverse Anticlinal Model

In the two migration examples using the correct
velocity, the first example has an "aperture" of 101 traces
(see Figure 42). The anticline is not properly recon-
structed in this case, because of the dispersive nature
of an anticline. The energy of the reflections was

reflected beyond the 101 trace window, therefore making
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it impossible to
example was done
In this case the

The two examples

74

reconstruct the depth model. The second
on a 512 trace window (see Figure 43).
anticline is properly reconstructed.

demonstrate that there is an "aperture-

like" consideration which needs to be taken into account.

The third migration example is the anticline migrated

with flat layer velocities (see Figure 44). The anticline

structure is correctly reconstructed, but the underlying

flat layer is distorted.
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Figure 35. Anticline model used to test the Fourier
theoretical technique's abilitv to handle
a model which disperses energy.
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Figure 36. Depth snapshot of the exploding reflector
anticline model.
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Figure 37. Depth snavshot of the exploding reflector
anticline model.
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Figure 38. Depth snapshot of the exploding reflector
anticline model.
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Figure 40. Depth snapshot of collapsing wave fronts
during Reverse time migration.
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Figure 41. Depth snapshot of collapsing wave fronts
during Reverse time micration.
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Figure 42. Reverse time migrated resnonse of the anticline
model for a 101 trace (5000 ft) aperture.
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model for a 512 trace (25,600 ft) aperture.
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Figure 44. Reverse time migrated response of the anticline
model for flat layer velocities.
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Synclinal Model

Forward and Inverse Problem

The model is a syncline with a flat underlying layer.
The purpose of this model is to test the ability of the
Fourier theoretical technique to handle a structure which
focuses energy. The laver consists of an overlying
burden of 8000 ft/sec. The next layer is 10,000 ft/sec,
followed by a 12,000 ft/sec "half space”. The boundary
between the 8 and 10 thousand ft/sec layers makes up
the syncline. The syncline is centered about CDP 51
and has a relief of 3000 feet (see Figure 45). The
migration done is to show the abilitv of Reverse time migra-
tion to properly reconstruct a buried focus (see Figure 52).
Also there is again an example of migration with the

incorrect velocity field (see Figure 53).

Observations of the Forward and Inverse Synclinal Model

The migration handles the "bow tie diffractions"
correctly, moving all events back to their proper location.
The second migration example is the syncline migrated
with flat layer velocities. The syncline structure is
correctly reconstructed, but the underlying flat layer is

distorted.
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Figure 45. Syncline model used to test the Fourier

theoretical technique's ability to handle
a model which focuses energy.
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Figure 46. Depth snapshot of the explodinc reflector
syncline model.
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Figure 47. Depth snapshot of the explodina reflector
syncline model.
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Figure 50. Depth snanshot of collarpsing wave fronts

during Reverse time migration.
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Figure 51. Depth snapshot of collapsing wave fronts
during Reverse time migration.
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Figure 52. Reverse time migrated response of the svncline

model using the exact velocities.
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Figure 53. Reverse time migrated response of the svncline

model for flat layer velocities.
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General Observations

On all the models there is an edge effect which
has not been removed. Diffractions propagate off the edges
of the exploding reflector. This is indirectly related
to the Fourier theoretical method. While the earth is
defined over a limited range of data, it has to be placed
within a grid which has a power of two-grid spacing to
accommodate the two-dimensional FFT. Because of this,
the exploding reflectors terminate at the edge of the
"known" earth. But, in fact, the earth has to extend beyond
that. The edges of the reflectors in turn set up the
diffractions. The way to solve this problem would be to

taper the reflectors smoothly at the edges.
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CONCLUSIONS

The results from the previous section demonstrate
the potential of the Fourier theoretical technique. It
allows the handling of much steeper events with little
dispersion. The only difference between a conventional
finite difference scheme and the Fourier theoretical
technique is the way in which the spatial derivatives are
handled. By going into the Fourier domain and implementing
the derivatives, there is little error in the spatial
approximation of the wave equation. The primary source
of error arises from the finite difference approximation
in time. Contrary to normal finite difference in schemes,
numerically the Fourier theoretical techniaue is easy to
apply to a wave equation, and it will give better results
for larger spatial sample rates because of small numerical
dispersion. While the Fourier technicue may not seem
cost effective for two-dimensional models (X,Z), the
results are better and there are no problems of spatial
aliasing due to the larger spatial sample rates. In the
future the Fourier theoretical technique will be applied
to three-dimensional models (X,Y,Z), and because of its
independency of spatial sampling, both the time of computa-

tion and the memory savings will bhe evident.
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In the forward modeling problem, it seems that while
the One-way wave equation cgives adequate solutions, there
are numerical problems which can arise. The wrap around
problem can be minimized by using larger FFT buffers,
but this can cause application problems. However, the
Two-way non-reflecting wave equation shows some promising
results (Baysal, 1984). While not fully implemented at
the time of this thesis, enough results and theoretical
studies have been analyzed to demonstrate its potential.

In the migration problem through the use of Reverse
time migration, the One-way wave equation does give very
interesting results. The wrap around problem does not
seem to effect the solution. This is because in the
case of migration the surface is entirely defined for
all time and this form of a boundary condition impedes
the wrap around from taking effect. It is important to
see the difference between conventional depth and Reverse
time migration. Conceptually they are very similar,
yet depth migration will have more dispersion at high dips
than reverse time for the same equation. Depth migration
extrapolates the depth response at t = ¢ for one z at a
time. On the other hand reverse time migration reconstructs

and carries along the entire depth wave field for all time.
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It is this reconstruction in space and extrapolation in
time that make Reverse time migration much more powerful.
If the correct form of the wave equation is used there
should be no loss of frequency with dip. Like a depth
migration, Reverse time migration demends on the velocity
model.

The results obtained from the Fourier theoretical
technique demonstrate that the method has great potential.
With further studies in the Two-way non-reflecting wave
equation, it is possible that post stack modeling and
migration will be taken the farthest they can go. At
this point the solution could approach the solution of
some of the prestack migration processes. It is also
possible to take the idea of the hybrid Two-way non-
reflecting wave equation into prestack. By considering
the effects over receivers and shots sevarately, it could
be possible to use a modified form of the hybrid schemes

in the prestack domain.
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APPENDIX A

DERIVATION OF THE ACOUSTIC WAVE EQUATION

Since all the methods described in this thesis make
use of the acoustic wave equation, it would be appropriate
to understand how it was derived in order to know its
limitations. This derivation is taken from Berkhout (1982).

Considering an isotropic fluid (a fluid is a medium
in which static shear forces cannot exist) with zero
viscosity, the non-linear basic equations that define
transmission of compressional waves in terms of

pressure variations; P
and

particle velocity; V
are derived.

The total pressure field 1is

where PO is the static pressure and P is the pressure
changes caused by the wave field. Also the total density

in the fluid is

o, = p_ + 0. (A2)
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The first equation that must be derived describes the
relationship between pressure variation in space and
particle veloclity changes in time. To show this relation-
ship, conservation of momentum (Newton's second law)

for a small volume AV with constant mass Am is used,

Fdt d (AmV) (A3)
or

Fdt = Amdv, (A4)
where V is the average velocity in AV. As time advances

from t to t+dt, the average particle velocity inside

AV changes according to

3V 3V oV v
AV = 3¢ dt + gp (V,dE) + 52 (Vo at) + 57 (V dt) (A5)
or
av. = v 3V Y v
T = 5t + §§.vx + 3y vy + 5 v, (A6)
or
av = av
£ =30t (WY, (A7)

where (V-V)V is referred to as the convection term and

vV = (VX,V

y,Vz).

If the force F is written as

- A
E = (E,F /F,), (28)
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then
_ _ _ |3k 9P
Fx = APXASx = [axAx+§Ed4 ASX (A9)
= - 2%\  as at - o, (A10)
oxX
where

AV = AxAyAz,

AS_’Z = AyAx.

Similarly it can be shown that

oP
F_ = - 22AV, A
y 5y (A1)
- - oP
Fz = 8ZAV, (Al2)
or by using equations (A8), (Al0), (All), and (Al2)
F = -AVVP. (A13)

Then by combining (24), (A7), and (Al3), the relationship

for conservation of momentum will become

v
-VP = pt [ (V-V)V] . (Al4)

The second equation will quantify the relationship between
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particle velocity variations in space and pressure changes

in time. By assuming a fixed amount of mass Am with some

volume AV, and exposing the mass to some external force,

its position and its volume will change. By the principle

of conservation of mass, the mass’change in volume (dV)

can be related to its change in total density (dp):

or

or

or

as

or

Am(xl,yl,zl,tl) = Am(xz,yz,zz,tz) (A15)

pt(xllyllzlltl)AV(XlIyllzlltl) =

pt(x2IY21221t2)AV(X2IY2l221t2) (Al6)
PLAV = (pyt+dpy) (AVHAY) (A17)
dog _ _av _ 40V (A18)

pt AV ptAV

The elemental change in total density can be written

ap apt apt apt
do, = 3¢ dt+—§§(vxdt)+—§§%Vydt)+—5;(vzdt) (A19)
dp
Tt - 0P, (v,
3¢ at+(y V)pt. (A20)

av can be written as

AV
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for small volumes, or

AV ox oy

dv _ 93 (Vxdt) + 3 {(Vydt) + 9 (Vzdt)

giving

av

Zv = (V'Y)dt.

Now by combining (A20), (A23), and (AlS8),

30 Vo = - .
¢ T (VYo o (V-V)+0(dt)

or, for small 4dt,

- - 9p
Velp+V) = s
or in more common form
_VoV = l._id_p_t
- pt dt

If a linear relationship between density changes and

pressure changes,

1
dp =
t V2

ar,

oz

4

105

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

exists within the constant mass Am, then by substitution

into (A26)
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or if K the bulk modulus is given by ptV2

= 1|2k .
v-\_/_K[at+ (\_IV)P} .

It can be shown that for practical seismic situations

A
| (VMY << | 5T
and
. oP
[ el <<| 8],

giving the commonly known relationships

Y
VP P
and
= 1 3P )
VeV = X 5t with K = pV"™.

Note that equations (A31l) and (A32) will apply for

106

(A28)

(A29)

(A30)

(A31)

(A32)

inhomogeneous fluids if the derivatives of p and V exist.

To derive the wave equation for inhomogeneous fluids,

the divergence operator is applied to equation (A31l),

3V
-V-(VP) = V- <Q§E>

(A33)
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or

) (8\1) 2V
-V°P =DV‘ -a—'E + E °Vp . (A34)

Substituting (A32) into (A34) gives
VP = —& —= - =— -Vp . (A35)

Combining (A31l) and (A35) then gives

2
P g = YP-Vlnp. (A36)
t

9

v’p - L
\Y%

The effect of density inhomogeneity on the wave equation is

given by the term VP-Vlnp. Hence if the inhomogeneity

in the 1lnp can be ignored, then the equation (A36) simplifies

to the acoustic wave equation

2

vp =1 2%, (A37)

VT 3t
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APPENDIX B

THE ONE-WAY WAVE EQUATION

Derivation of the One-way Wave Equation

Starting with the acoustic wave equation (see

Appendix A4),

vevép = p (B1)
and assuming that the velocity is constant, take a

three-dimensional Fourier transform on both sides of

(B1)
~N 2/\
. 2 2, _ w o=
(kx +kz )P = —5 P,
\Y
where
P (kx,kz,w) +> P(x,z,t) (B2)

giving the well known dispersion relationship:

= k 2+k . (B3)

Then we take the square root of both sides and multiply by

i = sqgrt(-1) to obtain

(B4)
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But it is known that
therefore
. 2 . 2 2. &
iwp = + 1V(kX +kz )P
and in the time domain
3P _ . 2 2.5~
5’{:— = ilV(kx +kZ ) P. (BS)

Egquation (B5) is the One-way wave equation where the sign

on the right hand side controls whether it is a forward

or backward propagating wave.

Stability

The first derivative with respect to time in the

One-way wave equation is approximated by the centered

difference scheme. The One-way wave equation in one
dimension is given by

Bpn _ BPD n _
— = V=0 P (x,nAt) = P (x,nht), (B6)
ot X

where n represents a specific time step. Assuming a

sinusoidal solution for (x,nAt) for the centered difference
approximation
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p™ (x,nAt) = el(kx_wnAt), (B7)
the expression will simplify to
vkx = - SER{0lE) (B8)

If omega, the temporal frequency, is real, then

lvkxAt]| < 1. (B9)
Now by taking the worst possible case at maximum velocity

and at maximum spatial frequency

the stability relationship for the One-way wave equation

is derived :

y§§xAt

1
% < = . (B10)
Extrapolating the solution to two dimensions gives
1
k = (k_%+k_2)% and if Ax = Az
X V4
VmaxAt . 1 . (B11)

Ax }/i_'ﬂ



T-2921 111

Numerical Dispersion Due to the
Finite Difference in Time

It is known from equation (B8) that

VkAt = sin(wAt).
For dispersion we are interested in some kind of measure
of phase velocity (temporal frequency/spatial frequency)
with respect to spatial frequency. This is done by solving

equation (B8) for phase velocity:

w _ Ar sin-l(aArK)

v K At Ark
where
_ VAt U1 C o
= 5 <7 for stability (B12)

In fact we are more interested in the change in

phase velocity relative to the true velocity:

Pv Ar sin-l(a Ark )

v T Vit Ark

(B13)
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APPENDIX C

THE TWO-WAY NON-REFLECTING WAVE EQUATION

Derivation of the Two-way Non-reflecting Wave Equation

In deriving the Two-way non-reflecting wave equation,

let us start with the basic equations of particle velocity

v LM

-Vh = Ogg (c1)
yol®

-V .\_7 - K 9t (C2)

Now taking the divergence operator of equation (Cl) and

combining with (C2) gives

2
e 4 (C3)

v- (lvp) =
P 3t

R

A, then the acoustic wave

In the acoustic case where K

equation is

1 82

—5— —

V p ot

v}

V- (%)-vp) (c4)

Q
N

(Berkhout, 1982)
To obtain the Two-way non-reflecting wave equation,

constant impedance is assumed in equation (C4)
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2p

Q

V- (VVP) = (C5)

<I=
d

ot
giving finally the desired form of the wave equation.
What does the assumption of constant impedance entail?

In general

If: Oi = angle of incidence
OR = angle of refraction
o,V P,V
_ 272 171
R(0,,08) = 5507 ~ coso, (Cé)
R i
oV P1V7
cos@R cos@i
(Aki and Richards, 1980)
or in terms of only the angle of incidence
2 2 .. 2
0,V,c0s0.=-p VvV, "=V, sin 0,
R(Oi) - 22 i "1 1 22 i (c7)

pzvzcos®i—o£\/%12—v2 sinzei
(Berkhout, 1982)

Constant impedance assumes that plvl = p2V2, and that the

bulk modulus is directly related to the velocity by the

impedance.

Stability
Using the same approach as used in Appendix B for

the One-way wave equation, a sinusoidal solution is assumed

for the finite difference scheme.
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d2Pr1 Pn+l_2Pn+Pn—l
— = 3 (C8)
dt At
Solving the finite difference equations of the assumed
solution gives
2 2 2, _ 4 .2 wht
\Y% (kx +k, ) = —% sin” —— (C9)

At
if the temporal frequency is real. This in turn gives the
relationship

ALV, 2. 2%
——(k, "+k, ) ] <1 (c10)

and evaluating it at the worst possible case gives the

stability relationship for Ax = Az

AtVmax < \/5
Ax i

(C11)

Numerical Dispersion

Taking the one-dimensional formulation of equation (C9)

and solving for the temporal frequency gives

N

VAt

X (c12)

w = F= sin(aArK);a =

Then by solving for the phase velocity (temporal/spatial

frequency) relative to the true velocity gives the



T-2921 115

dispersion relationship for the Two-way non-reflecting

wave equation.

E! _2 sin (5 Ark ) (©13)
v a Ark

where o < % for stability.
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APPENDIX D

SUPER COMPUTERS

Within the last three years technology has advanced
rapidly in the geophysical industry. Computing power
is reaching a point that many methods of processing
originally only considered can now be applied in a realistic
time frame. As these methods are the future in the
geophysical industry, I believe that a brief description
of two separate approaches to new super computing power

is appropriate to this thesis.

STAR-100

I have been fortunate to work on two of the world's
fastest computers. One is the STAR-100 array processor.
An array processor is a peripheral device being fed by a
program running on a front-end computer. The program
on the front-end treats operations on the AP as simply
a call to a subroutine. An array processor is a vector
machine, in which all operations are vector type operations.
Those operations are done by pipelining vectors through
vector-type functional units. This allows for results to
be produced every clock period. The STAR-100 is a new

generation of super array processors making use of VLSI
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structure. This AP can be divided into two distinct
operational elements. The first controls all the I/0
operations and arithmetic processing. The second is

the mass storage memory and the high speed cache memory.
Data is shipped from the host computer under control of the
I/O subsystem to the main memory. Main memory on the STAR
is a bulk storage device with a capacity of up to eight
million words (32 bits). The storage move processor
(SMP), then can move the data from main memory to the

data cache, where the data can be accessed by the
arithmetic control processor (ACP). The data, after
processing, can then be returned to main memory. All
these operations are controlled asynchronously by the

SMP and the ACP. The effective clock cycle on the

STAR is 40 nano seconds, with 100 megabyte port from

main memory to cache. At top speed, the STAR can operate
at just over 100 million floating point operations per

second.

CRAY-XMP 24

The other direction that some geophysical industries
are going is the super computers almost exclusively

controlled by CRAY Research. The CRAY-XMP 24 is a
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ligquid cooled dual processor CPU with four million words
of high speed bi-directional memory which allows access
at the same time by both CPUs. The XMP is a main frame
machine in which the front-end computers have no program
control. The front-ends act only as editing tools and
channeling devices allowing multiusers on the CRAY.

The heart of the CRAY is the two CPUs which have a
suite of functional units both scalar and floating-point
vector. The data and the programs reside in four million
words of memory. Data can be transferred from memory
to the vector registers at a rate of three words per clock
period. Attached to the main memory is a 256 megabyte
(32 million words) solid state disk. There is a direct
I/0 channel into main memory operating at 1250 megabytes
per second. On the other side of the CPU is a massive
I/0 subsystem, which controls up to 48 disk drives and
48 tape drives. Data is transferred across from the I/O
subsystem at a rate of 200 megabytes per second. The
entire system operates under a 9.5 nano second clock pro-
ducing up to 250 megaflops for both CPUs.

Both of the machines are very fast and it would
be difficult to say which is better. The STAR-100 may

produce faster code at high level languadges because
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of its inherent vectorization and minimal scalar operations.
The CRAY, however, has a much faster clock period, and can
take pure FORTRAN-77 code. What this means is that the
speed of the STAR is severely hindered by the I/0O being
done from its front-end. The CRAY has no such problem.

The problem with the CRAY is that vectorization is not a
simple process, but requires many hours of work to

optimize the code.
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APPENDIX E

PROGRAM OF THE FOURIER THEORETICAL
TECHNIQUE AS APPLIED TO
INVERSE MODELING
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SUCROUTING, RPT4_EDLITP

r

r Pisco edit phase subroutine:

o Used to sat up all disk files, allocate memory

C For description of PT¥ see RTM_PROCP

-

o variable definition

C Most varibales are described on the same line

~

C

o common blocks inlcude

ol Monfort Cisco common block

C Rtmcb Program common block

c

C
INCLUUE “MONFORT #NIOLIST®
INCLUDE “ETMCB JFLUR/NDLTST®
CHARACTLER *8 LINF
CHARACTIP*16 TDENT
CHARARCTRED *C SHAM
PINZMNSTION MLG(20) IMessaje block for communication

fwith module depth

EQUIVALENCE (rcz,02),(IDX,DX), (IV_SCALE,V_SCALE)
FQUIVALCNKCF (TV_MTN,V_MIN)

C

[

c
PDT=FLCAT(DTY*IL =5 1Convert sample rate

tfrom microseconds to seconds

NIRWACIS=¢ ITnitialize number of traces
15°Q=0% fsegquential number
=9 1RCORE memory counter
PUTFLAG= FALST o Ithree logical variables:
IN¥LIG=,TRUE, {INPUT mode
IFYRST=L.TRUE . {FLAG

n

r Open PROCTST temnlate and get input parameters

C
CALL S£TGRL (NLIST3S) Itisco routine
nX = FPAPY ( °DX°,0,0,0,0) iNelta x
FRPQ=FPARM(°*&x"3°,0,90,0,0) IMaximum frequency
VEL = CPARM ( °“0OPCR’,1, °MIGR” )'0peration

o

C wka Cet parameters from input list =a»x
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NAMg="CDP*
PO I=1,NL1ST
CALL NXTLST(LIST_NAMET, NNAMES,INDEX,NFEP)IGET NEXT LIST CARD
IF(INDEX.EQ.1)THFN
SNAV="TIME”
PL=C
RU=C
RDEF=10
END_TIME=IPARM(SNAM,001,RL,RUY,PDEF)
NTIMES=IPARM(“NTIMES*,000,0,0,0)
ELSE IF(INDZX.ZQ.2)THEN
SNAM="PKIY"
DFFANLT=°CDP "
NAME=CPARM(SNA¥,1,DEFAULT)
nLSE
WRITE(USERR, *) ,“INDEX PROBLEM IN INPUT LIST®
?ND IF

END DO

define and/or get trace headers

CALL THDRDEF(-TIME<*,1,ROIRSI,IXH_TIME) IPEFINE time headger
tsnap shots
ORDER=TXE_TIMu
Get index in trace header for
I=THDRGET(“LASTTR*,LFN,FORMAT,IXH_LASTR,“E®) tlast trace flag

I=THDRGET(NAME,LEN,FCRVAT,INDEX_CDP,“E”) IPrimary key
Y=THDRGET ( *SEQNG*,LEN, FORMAT, IXI_ISEQ,"E") 1Sequencial number

Necessary initializations
for FPS5-109 and Line definition
CALL SFTOPT(0) fnot a reentrant module
CALL INFOGET ( °LINT®,LINF ) IGet line name
CALL INFCGET(“APMAX®,APMAX) 1Get maximum size of AP
CALL APMEM(APMAX) linitialize AP

Read message from depthvel
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RUM=5
MSG_LEN=1

IF(NOT JMSGGRT ("RTY" ,MSG,NUK))THEN

Dz=DX

ID_LENGTH=16

V_MIN=1000

V_MAX= 1000
ELSE

IDZ=MSG(1)
IL_LENGTH=MSCG(?)
IV_MAX=MEG(3)
IV_MIN=MSG(4)
IDX=MSG(5)

ENCIF

PE=INT(LZ/1£-3)

Calculate fft lengths for x and z
CALL RTM_LENGTH(2*ID_LENGIH,IPOwaFR)
IPOWFR R=IPCWER+]
KZ_LFNGTH=2.,**(FLOAT (1FOWER))
CALL RTNM_LENGTH(ZAMAYNTR,IP)

IP=IP+1
XX_LFNGTH=2.=*(FLOAT(IP))

Calculate number of words need in memory

NwDT4=(MAXNTR+5)*ID_LENGTH
NWDT4=NwDT4+(KX_LINGTH+4) *(KZ_LENGTH+4)
NwDI4=(:iWDT4/126+1)*128

Allocate memory and disk spiace

CALL MFMVAR(NWOT4)
CALL DSKLCL(THDRLEN,MAXNTR, THRD_FIL)
CALL DSKLCL(ID_LENGT'l, MAXNTK,P_FIL)

CALL DSKLCL(LENGTH,MAXNIR,I_FIL)

CALL DSKLCL(XZ_LENGTH+4,KX_LENGTH,K_FIL)
ITOT=END_TIME/NTIMES+1

CALL DSKLCL(ID_LENGTH, ITOT*MAXNTR,DEPTH_FIL)

Scaling factor for stability
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PI=ACOS(-1.)
OMEGA=2 .*PI *FREQ
SAMP=1,.,/(2*0MEGR)

AC=5AMP
Do IC=1,10
AC=AC*10
IF(INT(AC).GT0)THFN
SAMP1=FLOAT(INT(AC))*10 .**~FLOAT(IC)
GOTO 11
ENDIF
ENDDO
111 CONTINUE
SAMP=SAMP]

V_SCALE_NEW=2 ,*SAMP

OLD_LENGTH=LENGTH
LENGTH=ID_LENGTH

RETURN
END



T-2921

o0

aaaan aaaaaIaaa

[Nz Rz Nz K Ee Ko Xy K2 ]

125

SUBRROUTINE PTM_PROCP(TRACE,THDR, IFLAG)

by Tony Sirtautas

at Golden Geophysical
can be contacted at SOKTIO Pet.
{214)960-4470

Process phase of a NDisco Module
Note this code i1s not transportable and there is no
guarantees that it is bug free.
Transportability problem:
1) This code must run under DISCOQ
The stand-alone code is available
2) %uns with the STAR-100 array proccessor
the FPS-100 array proccessor
The stand-alone code is writtern in Fortran=-77
and uses some code which needs a Cray XMP to run on.
This problem would be easy to fixe.

Variable definition
Most varibales ate described on the same line

common blocks inlcude
Monfort Pisco common block
Rtmcb Program common block

INCLUDF “RTMCB/LIST”
IKCLUDE “MONFORT 4LIST®

REAL TRACE(1),INTERCFPT
INTEGEP THDR(1)

CHARACTER AISTAT 220
PARAMETER (ILUN=1)

ASSIGN 100 TO PROC?
ASSIGN 200 TO NUTPUT

XI=0
IF(JUTFLAG)GOTO OUTPUT tir output mode
IF(INFLAG.AND.VEL NE .*DEPTH®)THEN
CALL MFMCRE(PCORF(FWAVAR),NWDT4)
LEN_NUM=NWDT4
PO I=1,KZ_LENGTH
RCORF(FWAVAR+(I-1))=0.
ENDDO
NUM=NWNT 4 /KZ_LENGTH

DC I=1,NUM-1



T-2921 126

CALL MOVCOR(RCORF(FWAVAR),RCORE(FWAVAR+I*XKZ_LESNGTH)
& s KZ_LENGTH)
LEN_NUM=LEN_NUM-XZ_LENGTH

ENDCO

INFLAG=.FALSF.
ENDIF
IFLAG =FLGSMULTI 1set up multi input mode
NTRACES=NTRACES+1
ID=ID+0LD_LENGTH.
CALL DSKWRT(Y_FIL,NIRACES,TRACE,OLD_LENGTH,1)
IF(THDR(IXH_LASTFE)e£Qel1eDRLNTRACESEQMAXNTR)IGOTD PROCP
CALL DSKWRT(T™HPD_FIL ,NTRACFS,THDR,THDRLEN,1)
RETURN

100 CONTINUF {Process phase
THDR(IXH_LASTE)=1
CALL DSKWRT(THRD_FIL ,NTRACES,THDP,THDRLEN,1)
DEPTH_DATA=FWAVAR
WORK_SPACE=DEPTH_DATI R+« ID_LENCTH*NTRACES+1
CALL RTM_XXKZ(KXKX_LENGTH,KZ_LENGTH,DX,DZ,FREQ,V_min,K_FIL)
CALL BLIOOCPM(°VEL.DSK®,°0OLD",0,0,BLSRDD,0,IVFL_TEMP)
CALL BLIOOPN("SVEL.DSK®,“NEW*,0,0,0,0,IVS_FIL)
CALL RTM_VSCALE(IVEL_TFMP,IVS_FIL,ID_LENGTH,NTRACES
& +V_SCALE_KT¥)

CALL BLIOCLS{IVEL_TIMP,“DELETE”")
JUNIT1=6
10"T=0
TTIME=0
PO IT=1,NTRACES

CALL DSKWRT(P_FIL,IT,RCOPL(DEPTH_DATA+(IT=-1)*IC_LENGTH)

& ,ID_LENGTH,1)
CALL DSKWRI(TEPTH_FIL,IT,RCORE(DEPTH_DATA+(IT-1)*ID_LENGTH)
& +ID_LENGTH,1)
FNDDO

I0UT=I0UT+NTRACLS
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STMR=.TRUE,
?IME_S=0 .
AISTAT=" *=STOFEN*=*<~

CALL STOPNW(ILYUN,ISTAT, (AP1)")
IF(ISTAT NE «0) CALL STAR_FRROR(AISTAT,ISTAT)

DO ICOUNT=1,FND_TIME/NTIMES this form is setup to release
1Star every few minutes.

go STAR

CALL RTM_FINITE(FCORE(DEPTH_DATA),RCORFE (WORK_SPACL)
+K_FIL,I_FIL,IVS_FIL
+OLD_LFENGIH,ID_LFNGTH,NTRACES,P_FIL
sKX_LENGTH,KZ _LENGTH,NTIMES,RDT,SAMP,TIMFT_S,STAR)

DO IT=1,NTRACZS
Roll circular buffer of finite difference
CALL DSKWRT(DEPTH_FIL,YOUT+IT
sRCOFPE(DEPTH_DATA+(IT-1)*ID_LENGTE)
+ID_LENGTH,1)
ENDDD
IDUT=I0UT+NTRPACES
FNDDD
AISTAT= “»*FINITE=*= STCLOS®

CALL STCLOS(CILUN,ISTAT)
IF(ISTAT .NE.O)CALL STAR_SRROR(AISTAT,ISTAT)

CALL BLIDCLS(IVS_FIL, DELETE”)
QUTFLAG=.TRUE.
ISEQ=0
P_FIL=0
P1_FTL=0
ID=0
CONTINUE
ISEQ=ISEQ+]
P1_FIL=P1_FIL+1
ID=ID+1
IFLAG=FLGSMULTN fMulti output mode (DISCQO)

CALL DSKRD(DEPTH_FIL,ID,TRACF(1),ID_LENGTH,1)
CALL DSKRD(THRD_FIL, 1, THDR, THDRLEN,1)
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THDR(IXH_LASTK)=0

THDR(IXH_TIME)=INT(10000=SAMP*(P_FIL))

THDR(IXA_ISLQ)=PLl_FI!
THDR(INDEX_CDP)=P1_FIL

IF(P1_FIL .EQ.NTRACES)THEN
P1_FIL=0
P_FIL=P_FIL+NTIMES
THDR(IXH_LASTR)=1

ENCIF

IF(ISEQ.GE .I0UT) THEY

IFLAG=FLGSNURM
RETURN

ENDIF

RETURN
END

fHit the last trace

128
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SUBROUTINE RTM_FINITF(A,B,K,BC,FILNAME, ITLEN,LEN,NTRACF.S
+SCALAR,FIL2,1KX,IKZ,NTIMES,DT,SAMP,TIME_S5,START)

This subroutine initializes, loads, and starts the microcode
the Star-100 Ap.

IMPLICIT REAL K

INTEGER FILNAME,FIL2,ILUN

INTEGER IA(3),IB(3),IXBUF(3),1BC(3),IK(3),1IV(3)
INTEGEP IWORK(3)

REAL A(LFEN*NTRACES),B(2*IKZ+NTIMFS*NTRACES),K(IKX*(IKZ+4))
REML BC(NTRACES*ITLEY),TIME(500)

CHARACTEP*2C ATSTAT
LOGICAL DEBUG,START
PARAMETER (ILUN=1,DEBUG=.TRUF.)

INITIALIZE COUNTERS TO PEAD THE FILESS FROM ASYCHONJUS STCRAGE
READS 1IN TERMS OF 512 BYTE BLOCKS

NBYTETP=(LEN)*4 INUMBER OF RYTES PER TRACES
IBLKSTR=NBYTETR/512
IF(NRYTETR.EQ.IBLKST®*512) THEN INUMBER OF RLOCKS PER TRACE

NBLKSTR=TIBLKSIR

ELSE
NBLKSTR=TBLKSTR+1
ENDIF
IBLK_ST=1 ISTARTING BLOCK NUMBRER

TIME_F=TIME_S+(NTIMES~1) =SAMP IFINAL TIME...
! THE STAR IS RELEASED

REM=AMOD(TIMFE_S,DT) IDETERMINE THE NUMBRER OF TIME STEPS
IBFTWEFN STARTING TIME AND END TIME

IST=(TIME_S-PEM) /DT+1
REV=AMOD(TIMF_F,DT)
IFT=(TIME_F+(DT~-REM))/DT+3

TF(IFT «.GT ITLEN)THEN 1IF PAST THE "END OF DATM" 4
! ONLY LET CALCLATE YO END

IFT=ITLER
TIME_F=(ITLEN=-1)*DT
NTIMES=(TIME_F-TIMF_S)/SAMFP+]

ENDIF
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NUMB=(IFT -IST)+1
DO I=1,NUMB
TIME(I)=DT=FIDAT(I-1)

ENDDO
DO I=1,NTRACES {INTRRPOLATE BOUNDARY CONDITINS
CALL RTV_INTTRP(NUMB, TIMF,BC((T=-1)=ITLEN+IST)
sB(2*IKZ+ (I-1)*NTIMES+1),NTIMES,SAMP)
ENDDO

OPEN THE STAR-100

JISTAT= °***FINITE™* STOPNW®
CALL STOPNW(ILUN,ISTAT, (AP1)")
IF(ISTAT .NE .0) GI TO 95999

CALCULATE THE NUMBEZP OF WORDS NEEDED ON THE STAR

ISIZE=
FANTRACES*ALEN# 2*TKX *(IKZ+4)+4*(IKX)+NTIMES*NTRACES+3*IKX
IS12¥=(1S12E/4000+1) *4

SCHEDULE THE JOB ON THE STAR-100

AISTAT= “*=FINITE** STSCH&"

CALL STSCHW(ILUN,ISTAT,”(DSIZE)°,I1SIZt,*(PSIZE)~",83)
IF(ISTAT .NE.O) GO TD 99999

WRITF(*,9991)ISIZE
FORMAT(///,1X,7STA® SCHEDULING COMPLETED WITH °,I5,° WOKDS.%,//)

DEFINF MAIN M®HMORY ARRAYS

AISTAT= “**FINITE** STARAY®

CALL STAPAY(ILUN,ISTAT,IA,NTRACES*LEN, “(REAL)")
IF (ISTAT.NE..O) GJ TO 99999

CALL STARAY(ILUN,ISTAT,IR,NTPACES*LEN,”(REAL)")
IF (ISTAT.NZ.0) G TO 99999

CALL STARAY(ILUN,ISTAT,IV,NTRACES*LEN,“(REAL)")
IF (ISTAT.NE.0) GO TO 99999
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CALL STARAY(ILUN,ISTAT,IWORK,IKX*(IKZ+4), (REAL)")
IF (ISTAT.NE.O) GD TO 95999

CALL STARAY(ILUN,ISTAT,IK,TKX*(1KZ+4), (REAL)")
IF (ISTAT.NE.0) GO T0 99999

CALL STARAY(ILUN,ISTAT,IXBUF,3*IKX, (REAL)")
IF (ISTAT.NE.0) GO TO 9599

CALL STARAY(ILUN,ISTIT,IBC,NTIMES*NTRACES, “(REAL)®)
IF (ISTAT.NE.D0) GD TO 99999

WRITE INFUT DATA TO ST100

a0

18(1)=1
IBC(1)=1
Iv(1)=1
1a(1)=1

AISTAT= “®**FINITE** STWRW®
DO INT=1,NTRACES
CALL BLIOGET(FILNAME,IBLK_ST+(INT-1)*NBLKSTR
& +B(1),NBYTETR)
CALL DSKRD(FIL2,INT,B(IXZ+1),LEN,1)

CALL STWR#(ILUN,ISTAT,R(IKZ+1),LEN,IR)
IF(ISTAT «NE+0) GD TO 99993

CALL STWRW(ILUN,ISTAT, AC(INT~-1)*LEN+1),LEN,IB)
IF(ISTAT .NFL0) GO TO 99999

CALL STARW(ILUN,ISTAT,B(2*IKZ+(INT-1)*NTIMRS+1),NTIMES, IBC)
IF(ISTAT .NE.0) GO TO 99999

CALL STWRW(ILUN,ISTAT,B(1),LEN,IV)
IF(ISTAT.NF.0) GD TD %99%%>

IV(1)=TV(1)+LEN
TA(1)=TA(1)+LZN
TE(1)=IB(1)+LEN
IRC(1)=IBC(1)+NTIVMES

ENDDO

1v(l)=1

IA(1)=1

IB(1)=1

IBC(1)=1

AISTAT= “**FINITE=x STWRVW~

IK(1)=1

DO INT=1,IKX

CALL STWRW(ILUY,ISTAT,K((INT=1)*(IKZ+4)+1),IK2+2,IK)
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IF(ISTAT.NE.0) GD TO 99999
IK(1)=IK(1)+IKZ+4
FNDOD
IK(1)=1

LGLEN1=ALUOG(FLOAT(IKZ))/ALOG(2.)
LGLEN2=ALOG(FLOAT(IKX))/ALOG(2.)

c
C STAR EXECUTION LOJP
c
CALL HEADER(” STAR PROCESSING<) tTIMING RDUTINES
CALL TIMR3
LOGICAL=0
IF(TIME_S.EG.0)LOGICAL=1
C
C
CRARERR R AR ALARAAR R AI PR AR A AR N AN AN R RA XA AN R AR AAXR RN AN AR NRNARKAARNXNRRATAR X 2
c
DO ICOUNT=1,NTIMES
AISTATI= °=»x DERIV ==~
CALL DERIVW(TILUN,ISTAT,JSTAT,
& IB,IV,IK,IWORK,IXBUF,NTRACES,NTRACES *LTk
& IKX*2,LGLEV1,LGLEN2,SCALAR,LOGICAL)
IFCISTAT NE Qo AND JTSTATNEL1209%)
& KRTTE(E,*),AISTAT,® JSTAT=",JSTAT
LOCGICAL=0
AISTAT= “»x FIN] =*»°
CALL FINIW(ILUN,ISTAT,JSTAT,
& 1A,1B,1wDRK,IBC,NTRACES,NTRACES sLEN,
£ ICCUNT)
IF(ISTAT JNE.0LAND SISTAT JNE.12099)
& WRITE(6,=),AISTAT,  JSTAT=",JSTAT
c
FNDDO
c
Ciiﬁil‘l“*!*t!'ﬁl'!‘tt*!l'tl AR RARNRERARANARARAAARNRARRAARXAARARNRAXNXARXNARNRANRRA N K &
c
111 CONTINUE

CALL TIMRE

IB(1)=1
IA(1)=1

AISTAT= “**FINITE*=* STRDW®

DO INT=1,NTRACES
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CALL STRDW(ILUN,ISTA®,A((INT-1)*LEN+1),LEN,IB)
IF(ISTAT .NE.0) GO TOD 99999

CALL STRDW(ILUN,ISTAT,B(1),LEN,IR)
IF(ISTAT .NEL.O) GO TO 99999

CALL DSKWRI(FIL2,INT,B(1),LEN,1)

IB(1)=TIs(1)+LEN
IACL)=TA(1)+LEN

ENDDO

RELEASE THE ST100

AISTAT= ***FINITE*™ STPEL~”

CALL STREL(ILUN,ISTAT)
IF(ISTAT.NE.C) GO TO 9999%

AISTAT= “**FINITE** STCLOS”®

CALL STCLOS(ILUN,ISTAT)
IF(ISTAT .NE..0) GO TO 99999

TIME_S=TIME_F
PETURN
ABNORMAL EXTI

WRITE(6,*)AISTAT

WRIT®(6,997) ISTAT
FORMAT(3X,”ISTAT FETURN VALUB: °,I3)

STOP “ABORTING EXECUTION®
END

133
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SUBRDUTINE. RTM_INTER®(N,T,Y,F,LENGTH,DFLTA)
CUBIC SPLINE SUBROUTINY USED TO INTERPOLATE THE BOUKNDARY

aoan

INTEGER N,LENGTH
REAL T(N),Y(N),D(500)
REAL C(500),2(500),F(LENRTH)
r(1)=1.
C(1)=0.
Z(D=0.
2]8] l'—'le -1
D(I)=2 .,*(T(T+1)-7T(1-1))
C(I)=T(1I+1)-T(I)
TEMP=(Y(I+1)-Y(1))/(T(I+1)-T(1))
Z(1)=6 *(TEMP=(Y(I)=Y(I-1))/(T(I)-T(1I-1)))
ENDDO
D(N)=1.
C(N-1)=0.,
Z(N)=0,
CALL TRI(N,C,D,C,2) ISOLVE THE TRI-DIAGONAL MATRIX
XVAL=DELTA
DO I=1,LENGTH

F(I)=5PL3(N,T,Y,Z,XVAL) 'ICALCULATE THE NFEDE PARAMETERS
XVAL=XVAL+DELTR

ENDDO

RETURN
END
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SUBROUTINE TRI(N,A,D,C,B)
TRI-DIAGONAL MATRIX SOLVER

aaqan

DIMENSION A(N),D(N),C(N),B(N)
DO I=2,N
XNULT=A(1-1)/D(1-1)
D(I)=D(I)-XMULT*C(I-1)
B(I)=B(I)-XMULT*B(I-1)
FNDDD

B(N)=B{N) /D(N)
DO I=1,N-1

B(N=I)=(B(N=J)-C(N-I)*B(¥-T+1))/D(N-1)
ENDDO
RETURN

FND
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FUNCTION SPL3(N,T,Y,2Z, %)
INTEPPLOTE USING THE YVALUES OBTATNED BY TRY
DIMENSION T(N),Y(N),Z(N)

DO J:IlN‘Z
I=N=J
TEME=X-T(I)
IF(TEMP,GE.O0)GOTD 3
ENDDO
I=1

TEMP=X=-T1(1)

H=T(T+1)-T(1)
A=TEMP®™(Z (I+1) <Z(1)) 7(6.*H)+.5*2(1)
B=TEMP*A+(Y(I+1)=Y(I)) pH=-H*(2.*Z(1)+Z(1+1)) /6.
SPL3=TFEMP *B+Y(T)

RETURN
END

SUBRKOUTINE RTM_KXKZI(IKX,IKZ,DX,DZ,FRFQ,V_MIN
+K_FIL)

FORM ARRAYS OF KX AND KZ VALUES FOr USE WITH DERIVATIVES 1IN AP
KX(TIKX) -—=> ARRAY OF KX VALUES
KZ(1¥Z) —-———> PRRAY OF KZ VALUTuS

wILL THEM GENERATE THE DERIVATIVZL MATRIX AND STORE IT ON DISK
INPUT ARGUMENTS

KX,IKZ —-——> NUMEER COF SAMPLES
DX,n2 ———=> SAMPLE RATE

INTEGER IKX,IKZ

REAL KXN,KZN

RPEAL K_MAX,K2

REAL KX(2000),KZ(2000),0L(2000),FX(2000),F2(2000),0UT(4000)

KXN=2*ACOS(=1.)/(2.,*DX)
KZN=2*AC0S(~-1.)/(2.*CZ)

DKX=KXN/(FLOAT (IKX)/2.)
DKZ=KZN/FLOAT(IKZ/2)

K_MAX=22ACOS(~-1.)2FREQ/V_MIN/SQRT(2)

TF(K_MAX.GT JKXN)K_MAX=XXN
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N_K_MAX=K_MAX/DKX+1

LEN=2 . **FLOAT(INT(LOG(FLOAT(N_K_MAX))/LDG(2.)))
K_MAX=(LFN=-1) *DKX

N_K_MAX=K_MAX/DKX+1

LEN2=2 .**FLOAT (INT(LOG(( »2*N_K_MAX)) /LOG(2.)))*2
DO II=1,LEN2

D(II)=1.
FNDDD
P0 I1=1,1KX
IF((II-1)*DKX,L2.KXN)THEN
KX(IT)=(TI-1)*DKX
ELSE
KX(IT)=(T1=-1)2*DKX~2=KXN
EXDIF
ENDDOC

K_MAX=2*ACOS(=1.) *FRTQ /V_MIN/SQRT(2.)
TF (K_MAX.GT .KZN)K_MAX=FZX
N_K_MAX=K_MAX/DKZ+1
LEN=2 o **FLOAT( INT(LOG(FLOAT(N_K_MAX)) /L0G(2.)))
K_MAX=(LEN=1)*DKZ
N_K_MAX=K_MAX/DKZ+1
LEN2=2 «**FLOAT (INT(LOG ({ «4*N_K_MAX)) /LOG(2.))) *2
no II=1,LEN2
D(II)=1.
ENDDD
DO JJ=1,1KZ/2¢1
KZ(JJ)=DKZ*(JJ -1)
ENDDO
DO J=1,IKX

12=1
DO I=1,1KZ+1,2

our(r)=0.

137
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OUP(T+1)==SQRT(KZ(IZ) **2.+KX(J) **2.)
1Z=12+1

ENDIO

CALL DSKWRT(¥_FIL,J,DUT,TKZ+2,1)
ENDDO

RETURN
END
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SUBROUTINE RTM_LENGTH(LENGTH, IPOWEP)

SUBROUTINE CALCULAYFS THE NEAREST POWER OF Tw0
RTLATIVE TO LENGTH. TO BE USEL WITH THE FFT

POWER=ALOG(FLOAT(LENGTH))/ALOG(2.)
IP=INT(PNWER+1)

IF((IP-POWER) .FQ.1)IP=INT(POWER)
IPOWER=IP

RETURN
END
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SUBROUTINE RTM_VSCALE(IV_FIL,IVS_FIL,L®"N,NTRACYS,SCALAR)
REAL WORK(4000)

SUBROUTINE SCALES THE VELOCITIES BY SCALAR
THE VELOCITYIFS ARE STARED OUT OF CORE

NBYTETR=(LEN)*4
IBLKSTR=NBYTFTR /512
IF(NBYTETF .EQ.IBLKSTR*512) THEN
NBLKSTR=JPLKSTR
ELSE:
NBLKSTR=IBLKSTF+1
ENDIF
IBLK_ST=1
D0 INT1=1,NTIRACES

CALL BLIGGST(IYV_FIL,IBLK_ST+(INT1-1) *KRLXSTR
,®0RX(1),NBYTETR)

DG ILEN=1,LEN
WORK (ILEN)=WORK(ILEN) *(=SCALAR)
ENDLO

CALL BLIOPUT(IVS_FIL,IBLK_ST+(INT1-1)=NBLKSTR
+WORK(1),NBYTETR)

ENDPDO
RETURK

ENT
PRDCESS FINI(A,B,WOKK, RC,NTRACE,NTLN,NTNT¥,1ID)
LOCALMEMORY
INTEGER NTLN,NTNTM,NTKACF
INTECER NTIMES,DELEN
INTEGER BCLEMN,RCNIL,BPSLEN,BRSM,BRSM2,CM2,Ch,CNL2,CNM2
INTEGEP DF,DLEN,DNTL,I,ICOL,ICOLI,ICOLD,ID,ITN,IQUT,IROW
INTEGER LEN,LEN2,LGLEN,LGM2,M,M2,MLP2,MN,N,N2,NT,NTL
INTEGER RLFLG,SCLE
MAINMEMORY
REAL A(NTLN),B(NTLN)
PEAL WORKF(NTLN)
REAL BC{NTNIM)
CACHEM®MORY
REAL(CIT,AT(8192)),(C1R,AB(8192))
REJL(C2T,RT(8192)),(CZB,PB(8192))
REAL(C3T,CT(8192)),(C3R, CR(8192))
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NTIMES=NTNTM/NTRACE
DELEN=NTLN/NTRACE

PHYSICAL MERGING OF MANY PROCESSFS TD SPEED UP THE CODE
ONE OF THE LARGEST FROCESS WHICH CAN RUN ON THE STAR

PROCESS ADD(NT,LEN,NTL,WORK,A)
LOCALMEMORY
INTEGER NT,LEN,NTL,I,1COL
MAINMEMORY
REAL WORK(NTL),A(NTL)
CACHF M MORY
REAL(CIT,AT(8B192)),(C18,AB(8192))
RLAL(C2T,BT(8192)),(C2E,BB(8192))
REAL(C3T,CT(8192)),(C3B,CB(81%2))

NT=NTRACE

LEN=DELEN

"TL=NTRACE *DELEN

CALL STSVYNC(0O GO 00)

LOAD FIRST TwWO VECTORS

CALL SMM2C(WCRK(1),1,4,0,AT(1),1,LFN)
CALL SMM2C(A(1),1,4,0,BT(1),1,LEN)

CALL STSYNC(10 10 10)
AVADD FIRST COLUMN

CALL AVADD(AT(1),1,BT(1),1,C7(1),1,LEN)
GET 2ND COL

CALL SMM2C({WORK(I+4LEN),1,4,0,AB(1),1,LFN)
CALL SMM2C(A(1+LEN),1,4,C,PB(1),1,LEN)

MAIN PROCE'SS LOOPS
po 80 I = 3,NT,2
ACP -- ODD COLS; SMP -~ EVEN COLS
CALL STSYNC(01 01 01)
AVADD = 2°ND, 4°TH, 6°TH, ... COLS
CALL AVADD(AB(l),1,B8(1),1,CB(1),1,LEN)
WPITE 1°RST, 3°RD, 5°TH. ... COLS FROM CACHE TO MAIN

ICCL = (I-3) * LEN + 1
CALL SMC2M(WORK(ICOL),1,4,0,CT(1),1,LEN)

READ 3°RD, S°TH, 7°TH, +.. COLS FROM MAIN TO CACHE
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JCOL = (I-1) * LEN « 1
CALL SMM2C(WORK(ICOL),1,4,0,AT(1),1,LEN)
CALL sMM2C(A(ICOL),1,4,0,8T(1),1,LEN)

ACP -~ EVEN COLS; SMP ~-- ODL COLS
CALL STSYNC(10 10 10)
AVADD 3°RD, 5°TH, 7°TH, ... COLS
CALL AVADD(AT(1),1,BT(1),1,CT(1),1,LEN)
WRITE 2°KD, 4°TH, 6°ThH, ee. COLS FROM CACHE TO MAIN

ICOL = (I-2) * L¥N + 1
CALL SMC2M(wORK(ICOL),1,4,0,C8(1),1,LEN)

READ 4°TH, 6°TH, 8°TH, ... COLS FROM MAIN TO CACHE

ICCL = 1 * LEN + 1

CALL SMM2C(WORK(ICOL),1,4,0,AB(1),1,LEN)
CALL SMM2C(A(ICOL),1,4,0,8B(1),1,LFN)
CONTINUE

FLUSH DD LOOP B0

CALL STSYKC(O01 01 01)
CALL AVADD(ARB(1),1,BB(1),1,CR(1),1,LFN)

MOVE NEYT TO LAST CPL T3 VAIN

ICOL = (NT=2) * LEN + 1
CALL SMC2M(WORK(ICOL),1,4,0,CT(1),1,LEN)

MOVE LAST COL TO MAIN

CALL STSYNC(OC 00 00)

ICOL = (NT-1) * LZIN + 1

CALL SMC2M(wORK(ICCL),1,4,0,CB(1),1,LEN)
CALL STwaAP
PETURN
END

PROCFSS STBC(NT,DLEN,DNTL,WORK,BCLEN,BCNTL,BC,ID)
LOCALMFMORY

TNTEGER NT,DLEN,BCLEZN,DNTL,BCNTL,1,1ID

INTEGER IIN,IOUT

MAINMEMORY

REAL WORK(DNTL),BC(BCNTL)

CACHFMEMORY

REAL(C1,AT(8192))

REAL(C2,BT(8192))

PEAL(C3,CT(8152))

NT=NTRACE
CLEN=DTLEN
BCLEN=NTIMES
DNTL=NTRACE*DELEN
BCNTU=NTRACE *MNTIMZS
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CALL STSYNC(00 00 09)

DD 90 1 = 1,NT

TIN=(I-1)*DLEN+1

I0UT=(I-1) *BCLEN+ID

CALL SMM2C(WORK(IIN),1,4,0,A7(1),1,1)
CALL sMM2C(BC(IOUT),1,4,(,81(1),1,1)

CALL STSYNC(11 11 11)

AVADD BC INTG COLUMNS

CALL AVADD(AY(1),1,BT(D1,1,CT(1),1,1)

WRITE COLS FRPCM CACHE TO MAIN

CALL STSYNC(O00 00 €0)
CALL SMC2M(WORK(IIN),1,4,0,CT(1),1,1)
COXNTINUE

CALL STwAP

RETURN

FND

PROCESS STTMOV(NT,NTL,A,B,WOPK)
LOCALMEMORY

INTEGER NT,NTL,I,ICOL,LEN
MAINMEMORY

REAL A(NTL),B(NTL),C(NTL)
CACHEMFMORY

REAL(C1,AT(16384))
REAL(C2,BT(163%4))
REAL(C3,CT(16384))

NT=NTRACF

NTL=NTRACE*DELEN

LEN=NTL /NT

CALL STSYKRC(00 00 00)
ROTATF CIRCULAF BUFFEP

D3 100 I = 1,NT

ICOL=(I=1)*LEN+1
CALL swM2C(B(ICOL),1,4,0,AT(1),1,LEN)

CALL SMM2C(WORK(ICOL),1,4,0,8T(1),1,LEN)

CALL SMC2M(A(ICCL),1,4,0,AT(1),1,LFN)
CALL SMC2M(F(ICOL),1,4,0,8T(1),1,LEN)
CONTINUE

CALL STWAP
RETURN
FND
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PROCESS DERIV(B,V,K,WDFK,XBUF,NTRACE,NTLN,KXKZP4,IKX2,
*LGLZN1,LGLEN2,S1,LOGICL)

LOCALMEMORY

INTEGER NTLN,KXKZ2P4,IKY2,NTRACE,IKX

INTEGER LOGICL,LGLEN1,LGLENZ

INTEGER IKZ,DELEN,IKZP4

INTELGER BCLEN,BCNTL,BRSLEN,BRSM,BRSM2,CM2,CN,CNL2,CNM2
INTEGER DF,DLEN,DNTL,I,ICOL,TCOLY,ICOLD,ID,IIN,IOUT,IROW
INTEGER LEN,LEN2,LGLEN,LGM2,M M2, MLPD,MN,N,N2,NT,NTL
INTEGER RLFLG,SCLE

REAL S1,SCALAR

MAINMEMORY

REAL B(NTLN),V(NTLN)

REAL K(KXKZP4),AdODRK(KX¥ZP4)

REAL XBUF(IKX2)

CACHEMEMORY

REAL(C1T,AT(8192)),(C18,AB(B192))
REAL(C2T,BT(8192)),(C28,BB(3192))
REAL(C3T,CT(8192)),(C38,CB(3192))

TAKE THE DFRIVATIVE IN THE SPATIAL FOURIErR DOMAIN
PROCESS 1S A PHYSICAL MFRGE OF MANY PROCESSFS T0 SPEED Uv
EXECUTION

anoana

IKX=1KX2 /2
TKZP4=KXK2P4 /IKX
IKZ2=TKZP4 -4
DELEN=NTLK/NTRACF

R EsEe]

SCLLAR=S1
IF(LCGICL.EG.0)GOTID 39
SCALAR=S1/2
LOGICL=0

93 CONTINUR

C
c
cc PROCESS CLRMM( WORY, CNM2, N, M2 )
cc LOCALMEMCRY
cc INTEGER CNNM2, N, M2, 1, 1COL
cc MEINMEMOKY
cC REAL WOFK(CNM2)
c
CNM2=IKX®(IKZ+4)
N=IKZ+4
M2=IKX
C
c
o CLFAK ROWS PEFORE LDOADING AND FQURIEKk TRANSFORMING
c

CALL STSYKC( 000000 )
DO 2 TICOL = 1, M2
I =(1I1CoL-1 ) =Kk + 1
CALL SCLEMM( WORK(I), N )
CONTINUE

WAIT FOR COVPLETION AND RETURM

QN
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CALL STWAP
RETURN
END

PROCESS RFTCOL (M,MN,B,LEN,WORK,MLP2,LGLEN)

DO COLUMN RFFTS IN ST100
WITH INTERNAL ZERO-PADDING.

INPUT:
B(N,M)= INPUT ARRAY; N & M MUST BE RVEN (BECAUSE OF DOUBLE
M MUST BE >= 4 TC ALLOW PIPRLINE T0 BF SET UP.
THE TRANSFORM IS DONE OVE® THR “M° REAL COLUMNS OF “XIN°.
I.E. ~ IN THE °N“° DIRECTION. THE PROCFSS WILL ZERO-PAD
THE INPUT LYNGTH, N, 10 L¥NGTH, L®N, BEFORE TRANSFOFMING
EACH COLUMN.

MLEN = M * LEK
LGLEN = L3G2 ( LN )
WITH LEN = DESIPED OQUTPUT VSCTOP TRANSFORM LENGTH

(M'IST BE POWFR OF 2)

JUTPUT:
WORF(LEN+4,v) = QUTPUT COLUMN FFT ARRAY IN PACKED FORMAT

LOCALMEMOFRY

INTEGEP N,M,LEN,LGLEN,DF,MLP2,¥N

INTEGER SCLE,BRSLEN,N2,LEN2,RLFLG,TICOL,I
MAINMEMORY

REAL B(MN),WORK(MLPZ)

CACHEMEMOPY
REML(C1T,AT(8132)),(C13,4B(8192))
REAL(C2T,BT(8192)),(C25,BB(8192))
RPEAL(C3T,CT(8192)),(C3E,CB(8182))

M=NTRACE
LEN=IKZ
LGLEM=LGLEN1
MLP2=IKX*(1KZ+4)
MN=NTRACF *DELEN

DF =1

RLFLG = 1

SCLE = 1

N = MN/M

BRSLEN = 30 + LGLEMN
N2 = N/2

LEN2 = LEN/2

CALL STSYNC(00 00 00)
LOAD SN/CS TABLE IN CACHB
CALL SMsSTMC(0,CB,CT,LEN2,BRSLEN)
GET M°TH COLUMN;
NEED T0 PO TRIPLE XFER (MAIN - CACHE - MAIN - CACHE)
TO EFFECT ZFRC-PADDING

ICOL = (M=1) * (LEN+4) ¢+ 1
CALL SMXMC2(B((M=-1)*N+1),A"(1),BT(1),N2)
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CALL SCLRMM(WURK(ICOL),LEN)

CALL SMXCM2 (WORK.(ICOL),AT(1),BT(1),N2)

CALL SXMC2B(WORK(ICOL),AT(1),BT(1),LFN2,BKSLFN)
CALL STSYNC(10 10 11)

RFFT M°TH COLUMN

s EoNe] (]

CALL FFTR(AT(!),BTI(1),CB,C™,LGLEN,DF,SCLE,RLFLG)
CALL RFFTPX(AT(1),BT(1),LGLEN,1)

GET (M-1)TH COL

aoa

ICOL = (M-2) * (LEN+4) +1

CALL SMXMC2(B((M=2)=N+¢1),AF(1),BB(1),N2)

CALL SCLRMM(WORK(ICOL),LFN)

CALL SMXCM2(WGCPK(ICOL),AB(1),BR(1),N2)

CALL SXMC2R(WORK(ICOL),AB(1),BB(1),LFN2,BRSLEN)

MAIN PPOCFSS LGOPS

aQan

DO 10 I = 1,"’2(2

ACP -- 0DD COLS; SMP == EVELM CJLS

aOn

CALL STSYKC(O01 01 11)

RFFT - (M-1)°TH, (M-3)°R[, (M-5)TH, «.. CILS

aan

CALL FFTB(#B(1),RB(1),CR,CT,LGLEN,DF,SCLE,RLFLG)
CALL RFFTPK(AB(1),BR(1),L3LIN,1)

WRITE M°TH, (¥=-2)°ND, (M-4) °TH, ... CCLS FRCM CACHE TD MAIN

Q00

ICOL = (M=1) * (LEN+4) + 1
CALL SMXCM2(WORK(ICOL),AT(1),BT(1),LEN2+1)

READ (M=2)ND, (M-4)°TH, (M~6)°TH, e.. COLS FROYM MAIN TO CACHE

aanQ

ICOL = (M~-I=2) * (LEN+4) + 1

CALL SMXMC2(B((M=-1-2)"N+1),AT(1),BT(1),ND)

CALL SCLEMM(wORK(ICOL),LEN)

CALL SMXCHM2(WORLK (ICCL),AT(1),BT(1),N?)

CALL SXMCZzB(WORK(ICOL),AT(1),BT(1),LEN2,BRSLER)

ACP =-- EVFN COLS; SMP =-- 0ODD COLS

aan

CALL STSYnC(1C 10 11)
RFFT (M=2)ND, (M-4)°TH, (M=6) “TH, ... COLS

(2R KR!

CALL FFTB(AT(1),8T(1),CB,CT,LGLEN,DF,SCLE,RLFLG)
CALL RFFTPK(AT(1),BT(1),LGLEN,1)

WPITE (M=-1)TH, (K-3)RD, (M=5)TH, eee COLS FROUM CACHE TO MAIN

Qa0

JCOL = (M=-I-1) * (LEN¢d) + 1
CALL SMXCM2(WOCRK(ICOL), RB(1), BB(1), LEK2+1)

C READ (M=3)RD,(¥=5)TH,(M-7)TH, ... COLS FROM MAIN TO CACHE
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ICOL = (M=I-3) * (LEN+4) « 1

CALL SMXMC2(B((M-I1~3)*N+1),AB(1),BB(1),N2)

CALL SCLRMM(WORK(ICOL),LEN)

CALL SMXCM2(WORK(ICOL),AB(1),BB(1),N2)

CALL SXMC2B(WORK(ICOL),AB(1),BP(1),LEN2,BRSLEN)
CONTINUE,

FLUSH pO LOOP 10
CALL STSYNC{0G1 J1 1)

CALL FFTB(AR(1), BB(1), C8, CT, LGLEN, DF, SCLE, RLFLG)

CALL RFFTPK(AB(1),BB(1),LGLEY,1)
MOVE 2°ND COL TO MAIN

ICCL = LEN+4 + 1
CALL SMXCM2(WORK(ICOL), 2T7(1), BT(1l), LEN2+1)

MOVF LAST COL TD MAIN
CALL STSYNC(OC 00 00)
CLLL SMXCMIZ(WCRK(1), AB(1), RB(1l), LFN2+1)
CALL STahAP
RETURN
FND
PRGCFSS RCOWFFT (,CNM2, XIN,M2,CM2,XBUF,LGM2,DF)
D2 ROw FFTS IN ST100

INPUT:

147

WORK(N,M)= TNPUT AKRRAY; N MUST BE EVEN (BECAUSE OF DUUBLEL

THE TRANSFOPM IS DONE OVER THF °N° ROWS OF “XIN®,
T.E« = IN THE “¥° DIRECTIMN.

Cv2 = 2 ® M2

CNM2 =2 *N * M2

M2 = DESIKED DUTPUT TRANSFORM LENGTH
(vUST BE, POWER OF 2)

LGM2 = L0G2 ( M2 )

DF DIRECTINN FLAG FOR TRANSFORM

= 1 FOF FORWARD TRANSFOERM
==1 FOR INVERSE TRANSFOPM
QUTPUT:

XOUT( N,M2 ) REPLACES wORK( N,M?2 )

LOCALMFMORY

INTEGE?® N,CKM2,M2,M,LGM2,DF,BRSY
INTEGLP SCLE,BRSMZ2,RLFLG,IROW,I,Ch,CM2
MATNMEMORY

REAL WORK(CNMZ),XBUF (CM2)

CACHEMSMORY
REAL(C1T,AT(8192)),(C1R,1B(8192))
PEAL(C2T,BT(8192)),(C2R,B3(8192))
KEAL(C3,CB(81%2),CT(8182))

N=1KZ/2+2
CNVM2=2(IKZ/sZ2+2) *1KX
v2=IKX
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LGM2=LGLEN2
DF=1
CM2=2*1KX

o0oa

RLFLG = 0

SCLE = 0
IF(DF.EQ.1)SCLF=1
BRSM2 = 31 + LGM?
CN =2 * N

M= MZ /2

BRSM 30 « LGM2

LOAD SN/CS TAELFE IN CACHe AND
CLEAR MAIN MEM VECTOR BUFFER

aQaaa

CALL STSYNC(CO 00 0O)
CALL SMSTMC(0,CB8,CT,MN,BRSM)

MUST DO TRIPLE XFER ( MAIN -~ CACHE =~ MAIN - CACHE )
TO 0BTAIN ROW VECTORS

aaonn

CALL SMM2C(WORK(1),CN,4, 0,AT,1,M2)
CALL SMM2C(WOKK(2),CN,4,C,BT,1,M2)

FFT FIRST RCW

a7a

CALL STSYNC(10 10 11)
CALL FFIN(AT,PT,C3,CT,LGM.,DF,SCLE,RLFLG)

GET 2ND ROW

aaa

CALL SMM2C(WOR¥(3),CN,4,0,AB,1,M2)
CALL SMM2C(WORK(4),Cn,4,(,BB,1,M2)

MAIN PROUCESS LJOPS

aaan

ACF -- EVEN KOWS; SMP -- 0ODD ROWS

a0an

CALL STSYNC(T1l 01 11)
FFT = 2’50, 4‘:!"’, G'TH' eee ROWS

g NeRw]

CALL FFTN(AB,BR,CB,CI,LGM2,DF,SCLE,RLFLG)

WRITL 1°RST, 3°RD, S5°TH. <.. ROWS FROM CACHE TO MRI™

(oo Ne]

IROW = (1-3) » 2 + 1

CALL SXCM2B(XEWF(1),AT(1),BT(1),M2,BR5MZ)
CALL SMXMC2(XBUF,AT,BI,MD)

CALL SMC2M(WORK(IROW),CN,4,0,AT,1,M2)
CALL SMC2M(WORK(IROW+1),CN,4,0,BT,1,M2)

c READ 3°RD, 5°%H, T°TH, ... ROWS FROM MAIN TO CACHF

IRCA = (T-1) * 2 + 1
CALL SMM2C(wWORK(IROW),CN,4,0,AT,1,M2)
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CALL

IROW
CALL
CaLL
CALL
CALL

IROW
CALL
CALL
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SMM2C(WORK(IROW+1),CN,4,0,BT,1,M2)

ACP =-- 0ODD RDWS; SMP =-- EVEN RONWS
STSYNC(10 10 11)

FFT 3°RD, S°TH, 7°TH, ... ROWS
FFTN(AT,BT,CE,C?,LGW¥2,DF,SCLE,RLFLG)

WRITE 2°ND, 4°TiH, 6°TH, ... ROWS FROM CACHE TO MAI)
= (1-2) *2 + 1
SXCM2B(XBUF(1),AB(1),BB(1),M2,BRSM2)
SMXMC2 (XBUF ,AB,BR,M?)
SMC2M( WORK(IROW),CN,4,0,AB,1,M2)
SMC2M (WORX( TROK+1),CN, 4, 0,BB,1,M2)

READ 4°TH, 6°TH, B8“TH, «.. ROWS FROM MAIN TD CACHF
=1 *24+1

SMM2C(WORK(IRGW),CN,4,0,48,1,Y2)
SMM2C(WOKK( IKOW+1),CN,4,0,B8,1,M2)

CONTINUE

CALL
CALL

TROY
CALL
CALL
CALL
CALL

CALL
IRCwW
CALL
CRLL
CALL
CALL

FLUSH DG L3NF 20

STSYNC(01 01 11)
FFIN(%B,BB,CB,CT,LGM2,DF,SCLE,RLFLG)

MOVEZ NEXT TC LAST ROW TO MAIN

= (N=2) 2 + 1
SXCM2B(XBUF(1),AT(1),BT(1),M2,BRSM2)
SMXMC2 (XBUF ,AT,8T,M7)

SMC2M(wORK( TROW),CN,4,0,AT,1,M2)
SMC2M( WOKK(IKOW+1),CN,4,0,BT,1,M2)

MOVE LAST ROW TO MAIN

STSYNC(O0 00 00)

= (N=1) * 2 + 1
SXCM2B(XBUF(1),AE(1),BB(1),M2,8BRSM2)
S¥XMC2(XBYUF,AB,BR ,M2)
SMC2M(WORK(IPOW),CN,4,0,AB,1,M2)
SMC2M(WCKK( IROW+1),CN,4,0,BB, 1,M2)

CALL STWAP
RETURN

END

PROCF.SS CVMUL(NT,LEN,CNL2,WORK,K)
LOCALMEMORY

INTEGER NT,LEN,CNL2,T,ICOL,LEN2
MAINMEMORY

REAL WORK(CML2),K(CNL2)
CACHEMEMORY
REAL(CIT,AT(8192)),(C1P,AB(8192))
REAL(C2T,BT(81%92)),("2E,BB(8192))
REAL(C2T,CT(8192)),(C38B,C8(8192))
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COMPLEX VRCTOR MULTIPLY
MULTIPLY WORK(I)=WIPK(I)*X(I)

NT=IKX

LEN=1KZ /2+2
CRL2=IKX*(1KZ+4)

LEN2=2*LEN
CALL STSYNC(GO0 00 00)

CALL SMXMC2(WORK(1),AT(1),RI(1),LEN)
CALL SMXMC1(X(1),CT(1),LFN)

CALL STSYNC(10 10 10)
ACV¥ FIPRST COLUMNMN

CALL ACVM(AT(1),BT(1),1,CT(1),1,AT(1),BT(1),1,LEN,O)
GET 2ND COL

CALL SMXMC2(WORK(1+LENT),AB(1),BB(1),L%N)
CALL SMXMCI(K(l+LCA2),CB(1),LEN)

MAIN PROCESS LOOFS
DD 30 I = 3,NT,2
ACP ~-- DD COLS; SMP == &Vet COLS
CALL STSYKC(01 01 O1)
ACVM = 2°Np, 4°TH, 6°TH, ... CILS
CALL ACVM(AB(1),RB(1),1,CB8(1),1,AB(1),BB(1),1,LEN,0)
WRITE 1°RST, 3°RD, S"THe e« FILS FROM CACHRE TU MAIN

ICCL = (I-3) = Lf%NzZ2 + 1
CALL SVMXCM2(WORK(ICCL),AT(1),BT(1),LEN)

PEAD 3°RD, 5°IH, 7°ThH, <.« C(OLS FROM MAIN TC CACHE
ICOL = (T-1) * LFN2 ¢ )
CALL SMXMC2(WORK(ICOL),AT(1),BT(1),L=M)
CALL SMXMCL(K(ICOL),CTI(1),L:N)
ACP -~ EVEN COLS; SMP -- 0NDD COLS
CALL ST3YNC(10 10 10)
ACVM 3°RD, 5°TH, 7°TH, ... COLS
CALL ACVM(AT(1),BT(1),1,CT(1),1,AT(1),8T(1),1,LEN,0)
WRITE 2°ND, 4°TH, 6 °TH, «.. COLS FROM CACHE TO MAIN

ICOL = (I-2) = LEN2 + 1
CALL SMXCM2(AORK(ICOL) ,AR(1),BR(1),LEN)
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c
C READ 4°TH, 6°TH, 8°TH, ... COLS FROM MAIN TO CACHE
c
ICOL = I * LEN2 + 1
CALL SMXMC2(WORK(ICGCL),AR(1),BB(1),LEN)
CALL SMXMCI(K(ICOL),CB(1),LEN)
30 CONTINUVE
C
C FLUSH DO LooP 30
C

CALL STSYNC(01 01 01)
CALL ACVM(AB(1),8E(1),1,CB(1),1,AR(1),BB(1),1,LEN,DO)

c
C MOVE NEXT TO LAST COL TO MATN
C
ICCL = (NT-2) * LEN2 + 1
CALL SMXCM2(WORK(ICOL),AT(1),BT(1),LEN)
c
C MOVE LAST COL TO MAIN
CALL STSYNC(OC 00 00)
ICOL = (NT=1) » LENZ + 1
CALL SMXCM2(WORK(ICGL),AB(1),BB(1),LFN)
cc CALL STwWhp
cc PETURN
cc END

PRCGCESS ROWFFT(N,CHM?, WOFRK,M2,CM2,XBUF,LGM2,DF)

(@]

DO ROW FFTS IN ST109

INPCT:

XIN(N,M)= INPUT PRRMY; N MUST BE EVEMN (BECAUSE OF DOUBL?T
THE TRANSFORM IS DONE OVEF THE °N° ROWS OF °XIN®.
I.E. - IN THE °“M° DIRECTION.

cv2 =2 ® M2

CuM2 = 2 K = M2

M2 = DESIRED JUTPUT TRANSFDK¥ LENGTH
(MUST BY% PCa<R OF 2)

LGM2 = L0G2 ( M2)

DF = DIRECTION FLAG FOK TRANSFCORK

= 1 FOR FOR®AFD TRANSFOFM
==1 FOP INVERSE IRANSFORM
JUTPUT:
XOUT( H,M2 ) REPLACES WORK( N,M?2 )

aaoOoOOOOOonNON OO0 aan

cc LOCALMEMOEY
cc INTEGER N,CNM2,M2,M,LGV¥2,DF,BKSM
cc INTEGER SCLE,BRSk2,RLFLG, IROW,I,CN,CN2
cc MAINMEMORY
cc REAL WORK(CNM2), XBUF (CV2)
: CACHEMFMORY
cc REAL(C1T,AT(8192)),( 1B, AB(8192))
cc REAL(C2T,BT(81%92)),(Cz3,R8(81%2))
cc REAL(C3,CB(8192),CT(8192))
c
c

N=IKZ/2+2
CNMZ=2*(IKZ/2+2) *IKX
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M2=IKX

LGM2=
DF=~-1

LGLEN2

CM2=2*IKX

RLFLG

SCLE

=0
=0

IF(DF.EQ.1)SCLF=1
BRSM2 = 31 + LGM2

CN =

M =M

BRSM

CaLL
CALL

CALL
Call

CALL
CALL

CALL
CALL

CALL

CALL

IROW
CALL
CALL
CAaLL
CaLL

IxN
CALL
CALL

2 *N
2 /2
= 30 + LGM2
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LOAD SN/CS TABLF IN CACH: AND
CLEAR MAIN MEVM VECTNR BUFFER

STSYNC(00 00 00)
SMSTMC(0,CE,CT, M,

RRSM)

MU31 DO TRIPLE XFER ( MAIN - CACHE - MAIN - CACHE )
CBTATN ROW VECTORS

TJ

SMM2C (WOF¥(1),CN,
SMM2C(BWCRK(2),CN,

4,0,AT,1,M2)
4,C,BT,1,M2)

FFT FIRST RCW

STSYNC(10 10 11)

FFIN(AT,BT,CB,CI,LGMZ,DF,SCLE,KLFLG)

GET 2ND ROW

SMM2C(WORY(2),CN,
SMM2C(wCKX(4),CR,

MAIN PROCES

ACP == EVIN
STSYNC(01 01 11)
FFT - 2°ND,

4,0, AB,1,M2)
4,C,BB,1,M2)

S LJ0Ps

kOxS; SMP =-- 0ODD ROWS

4°TH, 6°TH,

eses ROWS

FFIN(AB,BB,CB,CT,LG"2,DF,SCLE,RLFLG)

WRITE 1°RST
= (I-3) *2 + 1

¢ 3I°RD, S°TH.

eee POWS FPOM CACHE TO MAIN

SY.CM2B(XBUF(1),AT(1),8T(1),M2,BFS¥2)

SMXMC? (XBUF,AT,BT

%2)

SMC2M(WORK(IKOW),CN,4,0,AT,1,V2)
SMC2M(#ORK(IROW+1),CN,4,0,BT,1,M2)

READ 3°RD,
= (I<1) » 2 + 1

S°TH, 7°TH,

eees ROWS FROM MAIN TO CACHE

SMM2C(WORK(IROW),CN,4,0,AT,1,V¥2)
SMM2C(WOP¥(IkOW+1),CN,4,0,BT,1,M2)
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ACP -- 0ODD POWS; SMP =-- EVEN ROWS
CALL STSYNC(16 10 11)
FFT 3°RD, 5°TH, T7T°TH, <.. ROWS
CALL FFIN(AT,BT,CB,CT,LGM2,DF,SCLE,RLFLG)
WRITF. 2°KD, 4°TH, 6°TH, ... RDOWS FROM CACHE 10 MAIN

JROW = (1-2) * 2 + 1

CALL SXCM2B(XBUF(1),AB(1),BB(1),M2,BRSM2)
CALL SMXMC2(XBUF,AB,BB,M2)

CALL SMC2M(¥WORK(IRUW),CN,4,0,AB,1,M2)
CALL SMC2M(WORK({IROW#1),CN,4,0,BB,1,M2)

REARD 4°TH, 6°TH, B°TH, ... ROWS FROM MAIN TO CACHE

IRCW = 1 * 2 + 1

CALL SMM2C(WORK(IROW),CN,4,0,AB,1,M2)
CALL SMM2C(WORK(IRCW+1),CN,4,0,BB,1,M2)
CONTINUE

FLUSH DU L3OP 40

CALL STSYNC(O1 01 11)
CALL FFIN(AB,BB,CB,CT,LG¥2,DF,SCLE,RLFLG)

FOVE NEXT TO LAST ROW TO MAIN

IROW = (N=2) *2 + 1

CALL SXCMZB(XBUF(1),AT(1),BT(1),M2,8RS¥2)
CALL SMXMCZ(XBUF,AT,8T,M2)

CALL SMC2M{WOKK(IRUW),CH,4,0,AT,1,¥2)
CALL SMC2M(®ORK(IKCW+1),CN,4,0,B7,1,M2)

MOVE LAST ROk TO MAIN

CALL STSYNC(O0C 00 00)
IRTY = (N-1) 2 + 1
CALL SXCMZB(XBUF(1),AB(1),8B(1),M2,BRSM¥2)
CALL SMXMC2(XBUF,AB,B3,M2)
CALL SMC2M(wOrK(IROW),CN,4,0,AB,1,¥2)
CALL SMC2M(WORK(IROW+1),CN,4,0,BB,1,V2)
CALL STKAP
RETURN
END

PROCESS IFTCOL(M,N,LEN,WDORK,MLP2,LGLEN)
INVERSE RFT COLUMN TRANSFORM

LOCALMEMORY

INTEGEF N,M,LEN,LGLEN,DF,MLP2,ICOLT
INTEGEP SCLE,BRSLEN,N2,LFN?,RLFLG,ICOLO,I
MAINMEMORY

PEAL WORK(MLP2)

CACHEMEMORY
REAL(CIT,AT(8192)),(C1R,AB(8192))
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REAL(C2T,BT(8192)),(C2E,BB(B192))
REAL(C3T,CT(B192)),(C38B,CB(8192))

N=CELEN
M=NTPACE
LEN=1KZ
LGLEN=LGLEN1
MLP2=NTRACE *(1KZ+4)
DF = -1
RLFLG = 1
SCLE = 0
BRSL¥N = 30 + LGLEN
NZ = N/2
LENZ = LEN/Z
CALL STSYNC(00 00 0O)
LOAD SN/CS TABLF IN CACHE
CALL sSMsTMC(O,C8,CT,LEN2,BRSLEN)
GET FIRST COLUMN;
CALL SMXMC2(WORK(1),AT(1),BT(1),LEN2+1)
CALL STSYNC(10 10 11)
RFFT FIFST COLUMN

CALL RFFTPK(AT(1),BT(1),1GLEN,O)
CALL FFIN(AT(1),ET(1),CB,CT,LGLEN,DF,SCLE,RLFLG)

GET 2XD COL
CALL SMXMC2(WORK(LEN+4+1),AB(1),BB(1),LENZ+1)
MAIN PROCESS LDOPS
DO 5C 1 = 3,M,2
ACP -- 0ODD COLS; SMP -= EVEN CJLS
CALL STSYNC(O01 01 11)
RFFT - 2°ND, 4°TH, 6°TH, .. COLS

CALL RFFTPK(AB(1),BB(1),LGLEN,C)
ChLL FFI¥(AF(1),88(1),CB,CT,LGLEN,DF,SCLE,RLFLG)

WPITE 1°RST, 3°RD, 5°THe ... COLS FROM CACHE TO MAIN
ICOLD = (I-3) * (K) + 1
CALL SXCM2B(WORK(ICOLD),AT(1),BT(1),LEN2,BRSLEN)
CALL SMXMC2(WORK(ICOLD),AT(1),87(1),N2)
CALL SMXCM2 (WGPK(ICJLD),AT(1),BT(1),N2)

READ 2°PD, S5°TH, 7°TH, «.. CILS FROM MATN T0 CACHE

ICOLT = (I-1) * (L%N+4) + 1
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CALL SMXMC2(WORK(ICOLI),AT(1),BT(1),LEN2+1)
ACP =< EVFN COLS; SMP -- ODD COLS

CALL STSYNC(10 10 i1)
RFFT 3°RD, S°TH, T°TH, .. COLS

CALL RFFTPK(AT(1),BT(1),LGLEN,O)
CALL FFTN(AT(1),BT(1),CB,CT,LGLEN,DF,SCLE,RLFLG)

WRITE 2°ND, 4°TH, 6 °TH, ... COLS FROM CACHE TO MAIN
ICOLD = (I-2) *» (N) + 1
CALL SXCM2B(WORK(ICOLO),AB(1),BB(1),LEN2,BRSLEN)
CALL SMXMC2(WGPK(ICOLD),AB(1),RB(1),N2)
CALL SMXCMZ(WORK{(ICOL3J),AB(1),BB(1),N2)

READ 4°TH, 6°TH, 8°TH, ... CILS FROM MATN TD CACHE
ICOLYT = I * (LFN+4) + 1
CALL SMXMC2(WORK(ICOLI),AB(1),BB(1),LEN2+1)
CONTINUE,

FLUSHE DO Loop 50

CALL STSYNC(01 01 11)
CALL kFFTPK(}B(1),BH(1),LGLIN,D)

CALL FFTN(AR(1), BB(1), (3, CT, LGLEN, DF, SCLE, RLFLG)

MOVE NEXT TO LAST COL T3 MAIN

ICTLO = (M-2Z)*N+1

CALL SXCM2B(WCR¥(1COLO), AT(1), RT(1), LEN2, BRSLEN)

CALL SMXMC2(WORK(ICULD), AT(1), BT(1), N2)
CALL SMXCHM2(WORK(ICOL3), AT(1), BT(1), N2)

MOVE LAST COL TO MAIN

CALL STSYNC(0O0 00 00)
ICOLG = (M=1)*N+1

CALL SXCM2B(WUPK(IC3LJ), AB(1), BB(1), LEN2, BRSLEN)

CALL SMXMC2(WCRK(ICOL3), AB(1), BB(1), LEN2)
CALL SMXCM2(WORK(ICOLD), AB(1), BB(1l), N2)
CALL STWAP
RETURN
END

PROCFSS SWUL(NT,LEN,NTL,SCALAR,WORK)
LOCALMFMORY

INTEGER NT,LEN,NTL,I,ICOL

PEAL SCALAP

MAINMEMORY

REAL WORK(NTL)

CACHEMEMOFRY
REAL(C1T,AT(8192)),(C1B,AB(8B192))
REAL(C2T,BT(8192)),(C2E,BB(8192))
PEAL(C3T,CT(B192)),(C3B,CB(8192))

MULTIPLY WOPK(I)=SCALAR™WORK(I)
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SCALAR IS TRANSFERED FROM LOCAL T CACH® MEMORY

NT=NTRACE

LEN=DELEN
NTL=NTRACE*CELEN
CALL STSYNC(OC 00 00)

CALL SMM2C(WORK(1),1,4,0,AT(1),1,LFN)
CALL STWRCM(SCALAR,BT(1))

CALL STSYNC(10 10 10)
AVSMUL FIRST COLUMN
CALL AVSMUL(AT(1),1,B8T(1),Cr(1),1,LEN)
GET 2ND COL
CALL SMM2C(WORK(1+LEN),1,4,0,AB(1),1,LFEXR)
CALL STWPCM(SCALAK,BB(1))
MAIN PROCFSS LOOPS
DO 60 I = 3,NT,2
ACP -=- CDD COLS; SMP == EVEN COLS
CALL STSYNC(O01 01 O1)
AVSMUL = 2°ND, 4°TH, 6°TH, ... COLS
CALL AVSMUL(AB(1),1,88(1),C3(1),1,LEXN)
WRITE 1°RST, 3°PL, 5°TH. ees CIOLS FRGM CACHFE

ICOL = (I-3) *L®N + 1
CALL SMC2M(WORK(ICOL),1,4,0,CT(1),1,LEN)

READ ?°RD, 5°TMH, 7°TH, ... COLS FROM MATN TO CACHE

ICOL = (I-1) * LEN + 1
CALL SMM2C(WwORX(ICCL),1,4,0,AT(1),1,LEN)
CALL STWRCM(SCALAR,BT(1))
ACP -- EVEN COLS; sMP -- OUD COLS
CALL STSYNC(10 10 10)
AVSMUL 3°RD, S°TH, 7°IHd, ... COLS

CALL AVSMUL(AT(1),1,3T(1),CT(1),1,LEN)

WRITE 2°ND, 4°TH, 6°TH, ... COLS FROK CACHE TO MAIN

I1COL = (I-2) * LEN « 1
CALL SMC2M(WORX(ICOL),1,4,0,CB(1),1,LEN)
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RFAD 4°TH, €°TH, R°TH, «.. COLS FROM MAIN TOD CACHE

ICOL = I * LEN + 1

CALL SMM2C(WORK(ICCL),1,4,0,AB(1),1,LEN)
CALL sSMM2C(s(1),1,4,0,RB(1),1,1)

CALL STWRCM(SCRLAR,BB(1))

CONTINUE

FLUSH DD LOOP 50

CALL STSYNC(01 01 0O1)
CALL AVSMUL(AB(1),1,B8(1),CB(1),1,LEN)

MOVE NEXT TO LAST COL TO MAIN

ICOL = (NT=2) =~ LON ¢ 1
CALL SMC2M(WOFRK(ICOL),1,4,0,CT(1),1,LEN)

MJIVF LAST COL TO MAIN

CALL STSYNC(O0G 00 00)

ICOL = (NT-1) = LEN ¢ 1

CALL SMC2M(WORX(ICOL),1,4,9,CB(1),1,LEN)
CALL STWAP
RETURN
END

PRGCESS MUL(NT,LEN,NTL,ADRK,V)
LOCALMFMDRY

INTEGER NT,LFN,NTL,1,1CCL

MA INMEMORY

PEAL wORK(NTL),V(NTL)

CACHEMFMORY
PEAL(CIT,AT(B192)),(C18,AB(8152))
REAL(C2T,B7T(8142)),(C27,B3(81%2))
REAL(C3T,CT(3192)),(C38,CB(8192))

MATRIX MULTIFLY
MULTIPLY WORK(I)=WIRK(I)*V(I)

NT=NTRACF

LEN=DELEN

NTL=NIRACE *DELFN

CALL STSYNC(O0O 0C 00)

CALL SMMZC(WORK(1),1,4,0,A7(1),1,L¥N)
CALL SMM2C(V(1),1,4,0,BT(1),1,LEN)

CALL STSYNC(10 10 10)

AVMUL FYRST COLUEN

CALL AVMUL(AT(1),1,BT(1),1,CT(1),1,LEN)

GET 2ND COL

CALL SMM2C(WORK( 1+LEN),1,4,0,AB(1),1,LEN)
CALL SMM2C(V(1+4LEN),1,4,0,BB{1),1,LEN)
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MAIN PRCCESS LOOPS
ppo 701 = 3,NT,2

ACP =-- ODD COLE; SMP =~- EVEN COLS
CALL STSYNC(J1 01 01)

AVMUL - 2°ND, 4°TH, 6°TH, <.. COLS

CALL AVMUL(A2(1),1,BB(1),1,CB(1),1,LEN)

WRITE 1°RST, 3°RD, 5°TH. e.. COLS FROM CACHF TO MAIN

TCCL = (1=2) * LFN + 1
CALL SvC2M(WORK(ICOL),1,4,0,CT(1),1,LEN)

REAN 3°RD, T°TH, 7°TH, «.. COLS FRUM MAIN TO CACHE

ICCL = (I-1) * LFN + 1
CALL SMMOCT(WOPK(ICUL),1,4,0,AT(1),1,LEN)
CALL smM2C(v(ICOL),1,4,0,8T(1),1,L¥N)
ACP -~ EVEN COLS; SMP -~- PDD CJLS
CALL STSYNC(1C 10 10)
AVMUL 3°RD, S°TH, 7°TH, ee. COLS

CALL AVMUL(AT(1),1,BT(1),1,CT(1),1,LEN)

WRITE 2°KD, 4°TH, 6°TH, ... COLS FROM CACHE TO MAIN

ICAL = (1-2) * LN + 1
CALL SMCUM(wOR¥(ICCL),1,4,0,CB(1),1,LEN)

READ 4°TH, 6°TH, B"TH, <. COLS FRD¥ MATN TO CACHE

ICOL = I * L7N + 1

CALL SMM2C(WORX(ICCL),1,4,0,4B(1),1,LEN)
CALL SMM2C(V(ICOUL),1,4,0,8B(1),1,LFN)
CONTINUE

FLUSH DN LOOP 70

CALL STSYNC(C1 01 01)
CALL AVMUL(AB(1),1,BB(1),1,CB(1),1,LEN)

MOVE NEXT TO LAST COL T3 MAIN

ICOL = (NT-2) » LEN + 1
CALL SMC2M(WwORK(1ICOL),1,4,0,CT(1),1,LEN)

MOVE LAST COL TO MAIN

CALL STSYNC(OC 00 00)

ICCL = (NT-1) * LEL + 1

CaLL SMC?M(WORK(ICOL),1,4,0,CB(1),1,LEN)
CALL STkAP
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RETURN
END



