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ABSTRACT

This thesis presents a numerical study of the Residence
Time Distributions (RTDs) resulting from a pulse input to a
packed bed reactor where the flow is dominated by free
convection. A two-dimensional solution is obtained for
porous media confined between vertical side walls and heated
from below. Net vertical flow is imposed.

The approach was to solve the governing time-dependent
partial differential equations for flow to produce velocity
profiles at steady state. Using the steady state profiles a
second time dependent calculation was performed to obtain
tracer responses to a pulse input. Resulting RTDs for the
onset of free convection were correlated with flow patterns,
the Rayleigh number (Ra) - a measure of stability, and a
parameter RePr, the product of a Reynolds number and a
Prandtl number - characteristic of through-flow strength.
The achievement of steady state was clearly indicated by
plots of the natural logarithm of the root mean square
‘average vorticity against time. The RTDs for steady
convecting flow were intermediate to the perfectly mixed
vessel and plug flow models and characterized by multiple
peaks. The peaks were determined to result from
recirculation of tracer in the rotating convection cells.
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The pulse response was a function of Ra, RePr, and
vessel height. It was independent of the number of
convecting cells, and the vessel width. A mixing time
characteristic of the RTD increased with increasing RePr and
decreased with increasing Ra and height.

In summation, RTD methods are decisive in detecting
free convection and capable of qualitatively characterizing

the flow.
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1. INTRODUCTION

1.1 Objective

The study of free convection in porous media has
applications in many areas of chemical engineering. In
geothermal reservoirs and pebble bed nuclear reactors free
convection is the driving force behind the essential
transport of heat. Conversely, the presence of free
convection in o0il shale retorts and coal and biomass
gasifiers could reduce the overall conversion rate. Insight
on the flow processes occurring in porous media can be
readily obtained by the numericai solution of partial
differential equations. This was the general intent of this
thesis. 1In addition, it was desired to choose a numerical
approach that could be applied at some future date to
extensive experimental work.

Past experimental studies have been largely limited to
measurement of the rate of heat transfer or they rely on
temperature probes situated in the flow field - which
necessarily cause local disturbances - for information on
the internal state of the medium. Such heat transfer
methods are slow, imprecise, and generally difficult. It is
proposed that measurement of the Residence Time Distribution

(RTD) can be used as a non-intrusive means of obtaining
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information on the internal flow field, and in particular,
that it can be applied to detecting free convection. This
method has been widely used in mixing studies. Papers of
note are as follows. Holmes, Voncken and Decker [1]
quantified mixing times in turbine-stirred baffled vessels
by measuring the circulation time for a pulse of tracer.
Khang and Levenspiel [2] used RTD methods to characterize
batch mixing with a decay rate constant. This constant was
then used to define a mixing-rate number. Results similar to
Khang and Levenspiel were obtained by Sasakura et al. [3].
Measurement of the RTD has not been widely used in the
study of free convection. 1Its application to packed bed
reactor flows requires the existence of a net through-flow
Stream. Such a stream may be a pre-existing condition - as
with o0il shale retorts - or it may be induced by the
introduction of a small amount of through-flow.
The)specific intent of this thesis was to conduct a
numerical study to correlate the onset of free convection in
porous media with flow patterns, numerical parameters
characterizing stability and through-flow strength, and the

impulse response to a hypothetical tracer input.

1.2 Approach

Free convection is produced when a density gradient
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results in buoyant instability. Refer to Chandrasekhar [4]
for a thorough discussion of this subject. The density
gradient may be induced by a concentration gradient or a
thermal gradient. Only thermal gradients were considered
here. The model used consisted of a bed of porous media
heated from below in a gravitational field. Walls were
assumed adiabatic. Presupposing the possible existence of
asymmetrical flow patterns, symmetry about the centerline
was not used. Both no-flow and net vertical flow cases were
studied. The region investigated was restricted to flows
sufficiently small that forced convection could not mask the
effects of free convection. The cases of interest were
above the critical point for the onset of convection.

The approach was to solve the governing time-dependent
differential equations for two-dimensional flow under
conditions of free convection to produce a velocity profile
at steady state. Using the steady state profile a second
time-dependent calculation was performed for the solution of
a species equation for tracer, which gave the tracer
response to a pulse input. The governing equations for the
flow were solved with Successive Overrelaxation (SOR) and
Alternating Direction Implicit (ADI) methods. The tracer
response calculation used an explicit form of upwind

differencing after the ADI method was found to be
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inadequate. RTDs were generated by graphing the change in
exit age distribution against time. As this RTD has no
physical meaning for no-flow cases, RTDs were generated for
net through-flow cases only.

Refer to Carnahan, Luther and Wilkes [5] and smith [6]
for a general discussion of finite difference methods.
Specific application to computational fluid mechanics 1is
covered in Roache [7] and in Chow [8 1 Relevant papers
include Wilkes and Churchill [9] and samuels and Churchill

[10 ] who applied ADI techniques to free convection.

1.3 Previous Work: Convecting Flow

The onset of free convection in an initially stagnant
layer of fluid by heating the fluid from below in a
gravitational field was first observed by Bénard in 1900.
In 1916 Lord Rayleigh made the first theoretical analysis.
He identified a non-dimensional parameter, the Rayleigh
number (Ra), characteristic of stability/instability. It is
defined in the literature as the ratio of buoyant to viscous
forces. Pellew and Southwell [ 11 ] extended the theory of
convective currents to explain cell patterns. Lapwood [12]
made a theoretical analysis applying criteria for the onset
of convection to porous media. Katto and Masuoka [13]

refined the theory for porous media, defining an effective
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thermal diffusivity that incorporated the thermal
conductivity of the bed and the specific heat and density of
the fluid.

Of particular interest here is the work of Homsy and
Sherwood [14] on the effect of net vertical flow of €1uids
in porous media. They used linear theory to establish an
upper bound on the critical Rayleigh number above which free
convection must exist. The critical Rayleigh number in
their work is a function of a dimensionless through-flow
strength quaptified by the product of the Reynolds number
and an adjusted Prandtl number, RePr. The Prandtl number
used is based on a thermal diffusivity adjusted for the
thermal conductivity of the bed. The lower limit on the
critical Rayleigh number, below which stability is assured,
is given by energy theory. Figure 1.1 presents these
theoretical results and illustrates that the critical

Rayleigh number increases with increasing RePr.
1.4 Previous Work: Residence Time Distribution

l1.4.1 Theory
Tracer response theory commonly uses an impulse
function for the tracer input. Theoretical results are well

known for two limiting cases: plug flow, and the perfectly

~
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mixed vessel. There are many forms, other than these two,
that the RTD can take depending on the degree of mixing.
For plug flow, the one-dimensional species equation for

tracer concentration, C, is

aC 52C 3C
.——A— —3 - _—A
5t ‘}S—‘Ayz Vay (1.4-1)

with boundary conditions

Ca = A -« §(t) at the entrance (1L.4-2)
S—EA =0 at the exit

Where A is the area under the concentration - time curve, t
is time, D is the mass dispersion coefficient, y is the
length, and v is velocity. Following the solution presented
by Friedley [15], the impulse response, G(y,t), as the

overall bed length approaches infinity is given by

2 1/2 - 2 2
Gly.t) = 2?/;(16 'b) exp [%E‘ﬁ (“%)] (1.4-3)

This function is plotted in Fig. 1.2. If measured at the

outlet the impulse response is the RTD.
The impulse response of a perfectly mixed vessel is

given by

= 2V exom (t¥
Ca = Ay exp (ty) (1.4-4)

where the term (v/y) is the inverse of the residence time.
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1.4.2 Experimental (
Experimental measurement of the RTD was used by
Feuerherm [16] to detect free convection. He used a
cylindrical vessel of porous media heated from below with a
net vertical downward flow. The saturating fluid was carbon
dioxide. Helium was used as the tracer gas since it can
readily be detected in carbon dioxide using the thermal
conductivity difference. Graphs of the RTD based on average
exit age are presented in Figures 1.3 and 1.4 for plug flow
and free convection. The average‘concentration at the exit
was determined from the cup mixing average of five points,
each at different radii. Since the tracer was distributed
across the bed at the inlet these results should approximate
the one-dimensional plug flow results of Freidley.
Feuerherm's work was preliminary. He was not able to

verify the cause of multiple peaks or to correlate the

resulting RTDs with flow patterns or numerical parameters.
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2. THE GOVERNING EQUATIONS

2.1 Flow Calculations

2.1.1 Governing System of Equations

Following common practice for studies of convective
instability the physical properties of the system, excepting
the density, are assumed constant. Applying the Boussinesq
approximation [4,8], that for small variations in
temperature density can be considered constant everywhere
except in the buoyant force term, the governing system of
equations for the flow calculations is:

Equation of State

p = pg 1-B(T-Tp) (2.1-1)

Continuity Equation

Vev = 0 (2.1-2)

Darcy's Law

= =Vp - XPJ - 3
0 vp gV 09J (2.1-3)
Thermal Energy Equation
aT (oCp)f . _ K\ o2
—_— 4 = f—
ot (G )b [v-vr] (pCp)bV T (2.1-4)

where B is the coefficient of volume expansion, T is the
temperature, p is the density with subscript '0' denoting

the density at temperature T, , vV is the superficial

ARTHUR LAKES LIBRARY
COLORADO SCHOOL of MINES
GOLDEN, COLORADO 80401
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velocity, P is the pressure, is the kinematic viscosity, K
is the bed permeability, g is gravity, j is a unit vector in
the vertical dimension, t is the time, Cp is the specific
heat, and k is the thermal conductivity. Subscripts 'f' and
'b' indicate fluid and bed properties, respectively.

The problem was attacked using a vorticity-stream
function approach [7,8]. Vorticity is defined as

Z = Vxy (2.1-5)

The stream function is given by

Y oy

= = 5y ¢ Vy T T 5x (2.1-6)
where x denotes the horizontal dimension, y the vertical
dimension. Taking the curl of Darcy's Law and applying the
above definitions, the system of equations in
two-dimensional rectanglular coordinates reduces to:

Stream Function Equation

> o |22 32
& = “lsxz t 397V (2.1-7)

vVorticity Transport Egquation

= BgK 3T
v 98X (2.1-8)

™y

Thermal Energy Equation

BT , (pCp)f [y BT , o BT
5t * (oCplb ["" 3% "Yay]

_ k 9?2 92
= (pCp)b [3x2 * ayZ]T

(2.1-9)
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These equations are now applied to a porous medium confined
between vertical side walis and heated from below. Net

vertical flow is imposed. See Figure 2.1

2.1.2 1Initial Conditions

An initial velocity field is assumed such that there is
no horizontal component of velocity and the vertical
component is constant

vy = 0 , vy = Vo (2.1-10)
This velocity field requires an initial stream function

profile that is linear with respect to x and constant with

respect to y

= - Vo i
U = -VoX + > width (2.1-11)

The initial temperature profile is based on a system at
steady state in the absence of free convection: Temperature
is constant with respect to x and varies with respect to y
as a function of the superficial velocity.

T = £(y,v5) (2.1-12)
Since the horizontal temperature gradient is zero and
vorticity is proportional to‘this gradient, the initial
vorticity must also be zero.

£ =0 (2.1-13)
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2.1.3 Boundary Conditions

Boundary conditions for the system ate developed in
full at this point. Determination of which ones are
mathematically required was made after development of the
finite difference equations. The temperature and vorticity
boundary conditions will be dealt with first. The
temperatures at the top (entrance) and bottom (exit) are
held at their initial values. This requires vorticity to
retain its initial value of zero at the top and bottom.
Adiabatic walls are assumed. The requirement for no heat
flux through the Qalls may be written in terms of the
horizontal temperature gradient.

3T
3% 0

wall (2.1-14)

Again, in the absence of a horizontal temperature gradient
vorticity is zero
>
glwall— 0 (2.1-15)
Velocity at the top and bottom is held at the initial

condition. At the walls the x-component of velocity must

vanish
Vy a1l =0 (2.1-16)
additionally,
3V ,
—_—K =
oy lwall 0 (2.1-17)
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Since
z =0 2.1-15
Elwalr = (2.1-15)

has been established, and from equation (2.1-5)

H = 9Vy - OVx

wall 3X |wall 9y |wall (2.1-18)
aVy =0
oX |wall (2.1-19)

must also be true.

Since velocity at the entrance and exit is held
constant, the stream function at these points retains its
initial values. Along the walls equation (2.1-16) may be

rewritten as

v =

v = I = 0
% wall Y {wall (2.1-20)

defining a streamline. The initial condition is used in

order to be compatible with inlet and exit stream functions.

2.1.4 Dimensionless Form of the Equations

For the normalizing system to be most effective it must
be based on a time interval characteristic of the process.
For this flow problem the controlling parameter is the
effective thermal diffusivity,

o = kb

zpcp)f
(2.1-21)

and the appropriate time constant was based on thermal
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diffusion

_ Lo’
T =ty (2.1-22)

where H is a reference length. With the addition of a
reference temperature difference (T,-T,) where T, and T, are
the temperatures of the bottom and top, respectively, a

system of dimensionless variables is defined:

Length

= X = Y
X =g ¥ =g (2.1-23)

= . H
U= gz V = Vo= (2.1-24)

Stream function

-
¥ =3 (2.1-25)
Vorticitz
+_—>H2
w =& 5= (2.1-26)

Temperature difference

o = T-To
: T,-T, (2.1-27)
the resulting dimensionless system of equations is:

Stream Function Equation

- _ 82+82]\P
@ - [8Y2 39X 2 (2.1-28)
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Vorticity Transport Equation

> _ rad®
@ = Razg (2.1-29)

Thermal Energy Equation

30 . _{3(ue) , dwe)| 4 {82 4 3% |,

Y3T 0 X 3Y X2 9Y 2 (2.1-30)
where the stream function in dimensionless terms is defined
by

_ o
U=s53- v 5% (2.1-31)

and the dimensionless constants are the Rayleigh number

_ BgH(T:-T; )K
Ra = TIEY (2.1-32)

and the ratio of specific heats

y = {oCp)f
(oCp )b (2.1-33)

The thermal energy equation is presented in conservative
form by use of the egquation of continuity.

The initial conditions in dimensionless form are as
follows:
Velocity

u=20, V =V (2.1-34)

Stream Function

Yy = -VoX +

2 width

Vo [dimensionless
(2.1-35)

Temperature

0= £(y,Vs) (2.1-36)
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additionally,
©) =0, ] = 1 (2.1-37)
top bottom
Vorticity
© =0 (2.1-38)

The boundary conditions are:

Velocity
At the side walls,
- v =
Uwall ° oX wall 0 (2.1—39)

Components of velocity retain their initial values at the
entrance and exit.

Stream Function

The stream function retains its intial value at the
entrance, exit, and walls.

Temperature

At the side walls,

29 =0

oX {ya11 (2.1-40)

Temperature is held constant at its initial wvalue at top and
bottom.

Vorticity

Vorticity retains its initial value at the entrance, exit,

and side walls.
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2.2 Tracer Calculations

2.2.1 Governing Equation, Initial and Boundary Conditions
The species equation for tracer response is given by

oCa
ot

Ve = 2
+ (V.VCa) Dv?Ca (2.2-1)
where ¢ is the bed porosity, Cp is the concentration of
tracer, and D is the dispersion coefficient. In
/

two-dimensional rectangular coordinates the conservative

form of the equation is

3Ca 3(Ca Vx ) 3Cawy) | - FCa ¥ca
€5t * ox M Y D o X2 + 0y? (2.2-2)

Tracer is introduced at the top as a rectangular pulse
with concentration Cinitiale The duration of the pulse is
small in comparision with the residence time of the vessel
in order to approximate a delta function. The boundary
condition at the side walls is derived from the physical

constraint of no mass flux through the walls

Ca = 0
X |wall (2.2-3)

The exit concentration, following Danckwerts' [17] énalysis,

will be specified by

Ca = 0
Y |exit (2.2-4)
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2.2.2 Dimensionless Form of the Equation
The normalizing system developed for the flow problem
is carried over to the tracer equation with the addition of

a dimesionless concentration E,

=Ca ,
E = Gas (2.2-5)

where Cpo is a reference concentration. The resulting

dimensionless equation is

3E _ _3(UE) _ 3(VE) . 1 |32 . 32 |E
Y 3% 7Y Le|3xZ * 3% (2.2-6)

where the Lewis number is not the standard ratio of thermal
to mass diffusivity but is defined as the ratio of the

effective thermal diffusivity to the mass dispersion

coefficient.
= o
Le = D (2.2-7)

Concentration of tracer in the impulse is given by

E.

initiale Boundary conditions at the side walls and exit are

wall (2.2-8)

(2.2-9)
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3. NUMERICAL SOLUTION

3.1 Introduction

The system of partial differential equations, initial
and boundary conditions governing the flow and tracer
'response calculations has been established. The problem at
hand is to obtain finite difference approximations to the
" partial differential equations.

In general, central differences were used for spatial
derivatives, and forward differences for time derivatives.
The stream function, thermal energy and species equations
require additional consideration.

The stream function equation

o = [53_;2' * %2*??] ¥ (2.1-28)
is Poisson's equation, a special case of the more general
elliptic equation. Following common practice it was solved
by Successive Overrelaxation (SOR).

The thermal energy equation

20 :-[_asm+_am]+[82 32]@
o X oY

Y 7%z * 5z (2.1-30)
and the species equation for tracer

3E _ _ J(UE) _ (VE) , 1 |22 52

€3t 5X 5y Le["‘fax t 3y |E (2.2-6)

are mixed parabolic-hyperbolic equations. They have been
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formulated as conservative equations (the first derivative
is taken on the product of velocity and temperature/concen-
tration) to ensure conservation of thermal energy/tracer in
the finite difference calculations [7]. The thermal energy
equation requires current values of both velocity and
temperature; it is non-linear. The species equation for
tracer, because it uses velocities at steady state, is
linear.

There are many approaches to the numerical solution of
"these mixed parabolic-hyperbolic equations. Two finite
difference methods were considered here: Alternating
Direction Implicit (ADI) and upwind-differencing.

Implict methods have the advantage of being
unconditionally stable when applied to a single equation.
As a consequence larger time steps can be used than with
explicit methods. ADI was initially choosen because of the
success Churchill [9,10 ] had in applying it to free
convection. ADI techniques resolve the partial differential
equation into two finite difference equations: the first
implicit in the x-direction only, the second implicit only
in the y-direction. These finite difference equations are
applied successively, the execution of each occurring over
one-half the time step. The ADI method was successfully

applied to the thermal energy equation. Application to the
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species equation for tracer, however, resulted in excessive
and unrealistic overshoot and oscillations. At this point
it was decided to investigate upwind differencing of the
velocity components, a technique known to damp such
oscillations, for the species equation.

The salient feature of upwind differencing is that a
perturbation is convected only in the direction of fluid
motion. To its detrimént, it works by introducing an
artificial viscosity analogous to a diffusive viscous force
whose effect is to introduce artificial damping and
diffusion in the numerical solution. Upwind differencing
was tried with both explicit and ADI forms of the finite
difference equation. Both performed satisfactorily,
producing nearly identical results and requiring time steps
of the same order of magnitude. The ADI execution, however,
required more CPU time as well as additional storage.
Explicit upwind differencing was used for solution of the

species equation.

3.2 System of Grid Points

A system of grid points was established in
two—dimenéional.rectangular coordinates for solution of the
finite difference equations. Reference Figure 3.1. There

are "M" grid points in the horizontal direction and "N" grid
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Ay )

>

Figure 3.1
Two-Dimensional System of Grid Points
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points in the vertical direction. Consistent with the
development of the initial and boundary conditions, symmetry
about the centerline was not imposed.

Gradients in the vertical and horizontal dimensions
were expected to be of the same order of magnitude,
Suggesting,a common spatial increment with Ax equal to Ay,
could be used. This expedient results in less complicated
finite difference equations. The increment was designated
h. Common practice is to define this increment based on
height, yielding

1 __
N-1) (3.2-1)

h =
Because the horizontal to vertical ratio was a variable in
this paper it was desired to standardize the increment,
retaining the same step size for all calculations. A value
of twenty, the minimum number of grid points used in any

dimension, was chosen so that

S
(20-1) (3.2-2)

h =
Now the number of grid points, rather than the size of the
spatial increment, is variable. The height-to-width ratio
is varied by changing the ratio of M to N. The accuracy of
the execution is increased by increasing M and N proportion-

ately, thereby increasing the number of grid points.

For Ax equal to Ay the aspect ratio may be defined as
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the ratio of M to N. An aspect ra£io of one corresponds to a
square grid, greater than one indicates an increase in width
relative to height, and less than one signifies a
two-dimensional vessel taller than it is wide.

Subscripts for the horizontal and vertical directions
are "i" and "j", respectively. A supersdript "n", is used

for the time step, AT, when required.
3.3 Finite Difference Form of the Governing Equations
3.3.1 Stream Function Equation

Solution of the stream function equation by SOR takes

the finite difference form [6,7,8]:

n _ ,n-1 OPTOM || n-1 n-1 n-1
Yy TV 7 G—ir—)E?-Lj iy TYiga (3.3-1)
n-1 n=-1 o I
t¥i5-1 T 4%,y + B “Lj]

where OPTOM, the relaxation factor is equal to [7]

8 - 4/ 4 - (cosn/M - cosn/N)

OPTOM = (cosn/M — Cosn/N) (3.3-2)

Previous values of the stream function, and current values
of the vorticity are required. The solution is iterative at

the time step with convergence to a maximum allowable error.
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3.3.2 Vorticity Transport Equation
Vorticity is directly proportional to the horizontal

temperature gradient. The central difference form is:

e ra(Pitl3 =0i-15
wi,§ = Ra( 5h (3.3-3)

Current values of the temperature are used to generate the

current vorticity wvalues.

3.3.3 Thermal Energy Equation
Temperatures at the new time step are generated by
solving the thermal energy equaiton using an ADI technique

[5,6]. The general x-implicit equation is

UL 1 ). 2 2 ).
( 2h  ~ h7)%-L3% \JAT T B7)%43 (3.3-4)
Uril+ j 1 * - 2 n
* (—z-trld ~ h7)%+15 = \3a7/0L5 *

n n n n n
[Vi,j-l%j-l - Vilj+19i.j+1} +[@§11+1- 203, 5 +9'i’.j-1}
h2

2h

Similarly, the general y-implicit equation is

n
_v. T
ij-1 _ 1 n+l 2 2 n+l
( 2h "h‘2>@1~3-1+ (‘Y‘A'{ * h7/%; (3.3-5)
V3,441 1 +1 ( 2 *
3,3+ _ ntl .
* \™=n X AL ES! (YAT O3 *+

* n * * * *
Ui-1,50i-1,5 - UR1,50i415 | |, [Oi+n3- 20535 +0i-13

2h h2
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wheré superscript "*" denotes a time half step, n+l/2.

As illustrated in the above finite difference
equations, the non-linear term was handled by using values
of velocity from the current time step rather than from the
new time step. (New velocity values do not exist at this
point. They could be estimated by linear extrapolation or
determined by iteration at the time step. Neither approach
was believed necessary.) Values of the temperature at the

current time step are also required.

3.3.4 Velocity Equations

Velocity is obtained from the stream function by
applying central differencing to the stream function
definition. The resulting equations are

(‘yi.jﬂ-‘*’:; j-l) .

U3 = 2h (3.3-6)
Ve = _<‘¥i+1,j-“’i-1.j)
L3 ~ Z2h

Current values of the stream function are required, yielding

current values of the velocity components.

3.3.5 Species Equation for Tracer
The Species equation for tracer was solved for new

values of the tracer concentration using explicit upwind
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differencing [7,8]. The selection of the upwind
differencing technigue was made to introduce a damping
factor that would eliminate oscillations and negative
concentrations generated with the implicit method.

Using the steady state velocity fielﬂ the upwind
differencing velocities are defined as follows:

UF = (U415 + Uy 5)/2 (3.3-7)

UB

(Ui-1,5 + Uy 5)/2
VB = (V4 + Vy4)/2

the explicit form of the species equation for tracer becomes

BT = Ely - PL - P2+ (ar/cben?){E], 4+ E] ; (3.3-8)
n n n

where the parameters Pl and P2 are given by

Pl = (At/2¢h) (UF-|UF|)Ej,1,5+ (UF+|UF] (3.3-9)
~UB+|UB|)E; ; - (UB+|UB)E_; 4
P2 = (A1/2eh) (VF-|VF|)E] 541+ (VF+|VF| (3.3-10)

n

n
-VB+|VB|)E; y - (VB+|VB|)E; j,

Current values of tracer concentration are used in
conjunction with the upwind differencing velocities to

generate the new tracer concentration values.
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3.4 Finite Difference form of the Initial Conditions

3.4.1 Velocity
The initial conditions for velocity are given by
Ui,5 = 0 for all i, j (3.4-1)
Vi, § ='vb for all i, j

Vo r the initial velocity is calculated from

20-1)

Vo = "REPI(-I\-]-:_T—

(3.4-2)
where RePr is the product of a Reynolds number based on
actual height and a Prandtl number employing the effective

thermal diffusivity.

3.4.2 Stream Function

Requirements on the initial stream function profile are
that it be‘linear with respect to x, and constant with
respect to vy. ;mposing the additional constraint that the
stream funciton be zero at the centerline, the following

form can be deduced

\}J:V_Id.:_l‘.l—_l:_l.
1,3 ©\20-1/(2 M-1 for all i, j (3.4-3)

3.4.3 Temperature

The initial temperature profile is constant with



T-3155 33

respect to x and varies with respect to y as a function of
Vo. 1In terms of RePr it may be expressed as

05,35 = 1 - (3-1)[1/(N-1)] (3.4-4)
for no flow and

o: « = eXp[RePr[1-(j-1) (1/(N-1))]] - 1
] exp(RePr) - 1 ‘ (3.4-5)

for net through-flow. These forms are consistent with the
normalized initial conditions

051 = 1 for all i (3.4-6)

]

Oi,N 0 for all 1
3.4.4 Vorticity
The initial vorticity is zero.

wi,5 = 0 for all i, j (3.4-7)

3.4.5 Tracer Concentration

Tracer was introduced with the flow in a narrow
rectangular pulse, approximating the impulse function.
Reference Figure 3.2.

The initial condition for tracer concentration is

Ein = Ejnitial for all i, 71<6 (3.4-8)

E-

iN = 0 for all i, t26

and

Eirj =0 for all i, j=N
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3.5 Finite Difference form of the Boundary Conditions

3.5.1 Velocity
Components of velocity retain their initial value at the

entrance and exit

|
Vi3 = Vo for all i, j=1 or N

At the side walls the following conditions must be satisfied

U5 = 0 for i=1 or M, all j (3.5-2)
v = 0 for all j
9X|j=1 or M

The condition on velocity component V at the walls may be

expressed as a first order boundary condition

Vij = sz for all j (3.5-3)
th = VM_l,j for all j

First order boundary conditions are used for first
order derivatives thoughout this paper despite using second
order finite difference equations for the following reason
presented by Roache [7]. Wheﬁ using the vorticity stream
function scheme second order forms can cause instability.
The first order form is the safest to use and often gives

results essentially equal to higher order forms.



T-3155 36

3.5.2 Stream Function
The stream function retains its initial condition at

all boundaries.

3.5.3 Temperature

As previously stated the boundary conditions at the

entrance and exit are

0.4 =1 for all i - (3.5-4)

i, 1

O, =0 for all i

i, N
At the side walls

90

§?i=l<n-M = 0 for all j (3.5-5)

is expressed as the first order boundary condition
05 = 95 for all j (3.5-6)
Om 3 = Eu-1,3 for all j

3.5.4 Vorticity
A vorticity boundary condition is not explicitly
required for solution of the finite difference form of the

governing system of equations.

3.5.5 Tracer  Concentration

Concentration of tracer at the inlet is specified by
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the concentration and duration of the impulse. The boundary

condition at the side walls

-g—f{-i:l o u =0 for all j (3.5-7)
is expressed as

Ej 5y = By for all j (3.5-8)

Emj = EM-Lj for all j

The condition at the exit

oE _ .
Er4 M 0 for all i (3.5-9)
J
becomes
E;n = Ejn-1 for all i (3.5-11)

3.6 Execution

3.6.1 Overview

The execution was carried out in two successive steps:
solution of the flow equations for the steady state velocity
field, followed by solution of the species equation for
tracer. The former provided stream function and temperature
contours in addition to the velocity field. The later
result was used to generate the RTD and tracer concentration
contours.

A criterion was needed to establish when steady state

had been reached. It was believed that a function of
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vorticity could be used: when vorticity ceased to increase
with time the steady state would be attained. 1Inspection of
preliminary results suggested using the natural logarithm of
the root mean square (rms) average vorticity as it varied

with time.

3.6.2 Flow Calculations

The numerical approach to the flow calculations was as
follows:

1) 1Iterative solution of the stream funciton Poisson's

equation with SOR.

2) Calculation of the velocity components by central

difference.

3) Solution of the time-dependent thermal energy

equation by an ADI technique.

4) Calculation of vorticity by central difference.

5) Repetition of steps (1) through (4) until the

steady state is reached.

Reference figure 3.3 for the flow diagram.

A time step of AT = 5 and a nominal value for the ratio
of specific heats, Yy = 2x10” ', were used in all executions.
Note that the ratio of specific heats occurrs only in
conjunction with the time step. Modifying its value has the

same effect as changing the time step.
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3.6.3 Tracer Concentration Calculation

Solution of the time dependent species equation for
tracer using the steady state velocities was with an
explicit upwind differencing technique. Nominal values Qf
porosity, the Lewis number, and pulse duration were
selected. They were: € = 0.35, Le = 40, Ntrace = 10. The
time step, for most executions, was At = 0.0001. 1In a
result similar to that for the flow calculations, porosity
is always associated with the time step and modifications to
its value have the effect of modifying the time step.

Results are presented in a form suitable for
comparision with previous work. The RTD used was the
average dimensionless concentration of tracer at the exit
versus a dimensionless residence time. The average
concentration at the exit is comparable to the five point
cup mixing average concentration used by Feuerherm.

The dimensionless residence time, ¥ is the
dimensionless time, T divided by the residence time for the
vessel in dimensionless terms, Tyeg

* T
T -

Tres

The residence time for the vessel, t,.. is the void

volume divided by the volumetric flow rate, where for a

ARTHUR LAKES LISRARY
COLORADO SCHOOL of MINES
GOLDEN, COLORADC 80401
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vessel of unit depth the void volume is the product of
height, width and porosity, and the volumetric flow rate is
the product of width and the superficial velocity.
Expressing the superficial velocity in terms of RePr

_ RePr o’

Vo ¥ height (3.6-2)

the residence time for the vessel is

3 2
t _ height-‘e

res - RePr o (3.6-3)
In dimensionless terms, the height is

N-1 )H

20-1

height = ( (3.6-4)

and the dimensionless residence time for the vessel is

_ £ N-1 \2
Tres = —Repr'(_zo—l) (3.6-5)

Finally, the dimensionless residence time is

T*

T Repr(zo—l)2
€ N-1

(3.6-6)
The dimensionless time T was used in executing the program.
™ was calculated for presentation of RTDs only.

One last step remains to allow full comparision of the
RTDs: the dimensionless concentration of the pulse must be
standardized. This was done by requiring a standard mass of
tracer to be introduced with the flow. This mass is given
by

mass = Volumetric pulse

x PP
flow rate duration Cinitial (3.6-7)
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In terms of RePr the mass is

_ RePr o~ : pulse
mass = pErcoRe X width x Cinitial X guration (3.6-8)

To obtain a dimensionless initial concentration the mass
must be expressed in terms of the reference concentration
Cpo + as well. Defining Cpo as the initial concentration in
a perfectly mixed vessel, the mass may be obtained from the
relationship

c - mass
Ao void volume (3.6-9)

Substituting and rearranging,
mass = Cpo x height x width x ¢ (3.6-10)

The result of equating the two expressions for mass is

e _ Cinjtial _ € height?
Finitial Cro RePr o’ pulse duration (3.6-11)

The pulse duration in dimensionless terms is !

pulse = AT N <H2)
duration =~ &7 Ntrace\™ (3.6-12)

where At is the dimensionless time step and N.,,.. is the
number of time steps. The initial concentration becomes

BE. ... = € (N-l )2
initial RePr AT Ntrace 20-1

(3.6-13)
Figure 3.2 may be reconstructed in terms of the
dimensionless concentration and dimensionless residence time

defined in this section. Rewriting E; .:ia1 aS

) ST = Trgs
initial AT Nerace (3.6-14)
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and the pulse duration § as

6 = AT*Ntrace (3.6-15)
OI’
s* = AT Ntrace
Tres (3.6-16)

Figure 3.4 resutls. It is apparent that the area under the
pulse is equal to one. Applying conservation of mass, the
following relationship for the average exit concentration
may be deduced

Y: E(t*)dt* = 1 (3.6-17)

Hence, the area beneath the RTD curve will always be one.
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4. THE PERFECTLY MIXED VESSEL AND PLUG FLOW

As discussed in the introduction, tracer response
theory presents two limiting cases: the perfectly mixed
vessel) and plug flow. For comparision with results of
computations, these will be developed in the dimensionless
variables of this paper: E and T*.

The response of a perfectly mixed vessel to a unit
impulse is given by

E = exp (1%) (4.0-1)
Applying equation (3.6-17) the predictable result is

sj exp (7)dT* = 1 (4.0-2)
Having set the reference concentration equal to the initial
concentration in the perfectly mixed vessel the initial

concentration in dimensionless terms must be

=Sa_ -
E=Cu =1 (4.0-3)

For plug flow, the species equation for tracer becomes

(4.0-4)
following the solution presented by Friedley [15] we use the
boundary conditions

E= § at j=N (4.0-5)

a_E.=0 at j=l
Y
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The Laplace transform solution for a unit impulse is given
by

E(Y,s) = G(Y,s)+8 = G(Y,s) (4.0-6)
where G(Y¥,s) is the transfer function. Taking the limit as
the bed height approaches infinity, the inverse of the

transfer function, and hence the exit concentration is

1/2 -
E(Y,™ = 7‘.1/_?(%) exp[—%g(T* '1)2] (4.0-7)

Results for plug flow are characterized by a Peclet

number for mass dispersion, reference Friedley.

- height \'A
Pe ) (4.0-8)

Since

- height v,
RePr == (4.0-9)

and

Le =

UIQ

(4.0-10)
The Peclet number may be reconstructed as

Pe = RePr . Le (4.0~-11)
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5. PRESENTATION OF RESULTS

5.1 1Increase in Vorticity with Time

The first task was to recognize the presence of free
convection and detect when the steady state had been
achieved. As previously discussed, preliminary tests
suggested using the natural logarithm of the rms average
vorticity as it varied with time. Graphs of the natural log
of the dimensionless vorticity versus dimensionless time are
presented in Figures 5.1 through 5.4 for various RePr and Ra
numbers. Convecting cases are easily identified by a linear
‘growth in the log of vorticity which abruptly ceases when
the steady state is reached. The overshoot and oscillation
observed at the juncture is typical of an implicit method.
Non-convecting cases were also easily identified:
discounting the initial start-up, no growth in vorticity was
discerned. In summary, the vorticity criterion tells

unambiguously when steady state is reached.
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5.2 Stream Function and Temperature Contours

Confirmation that free convection was occuring was
readily obtained by viewing contour plots of the stream
function and temperature at steady state. Cell patterns
with one, two, three, and four cells were observed. Results
for a square grid, aspect ratio equal to one (M/N = 20/20),
are summarized in Table 5.1. Figure 5.5 presents a sample
initial temperature profile for RePr = 0. Representative
examples of paired stream function and temperature contours
for convecting flow are presented in Figures 5.6 through
5.15. Additional flow contours for various aspect ratios
are presented in Figures 5.16 through 5.23 for RePr = 4, Ra

= 200 and in Figures 5.24 and 5.25 for RePr = 4, Ra =600.



T-3155

Number of Convecting Cells, M/N

Table 5.1

RePr 0 1 4 10
Ra
100 1 1 1 -
140 2 - - -
200 2 2 2 2
400 2 - - 2
600 2 2 3 4 |
800 2 - - 4
1000 2 3 4 4

20/20

53
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8.60

0. 68

®.78

Figure 5.5
Initial Temperature Contour
RePr=0, M/N=20/20
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Figure 5.6
Stream Function Contour
RePr=0, Ra=200, M/N=20/20
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Figure 5.8
Stream Function Contour
RePr=4, Ra=100, M/N=20/20
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Figure 5.9
Temperature Contour
RePr=4, Ra=100, M/N=20/20
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Figure 5.10
Stream Function Contour
RePr=4, Ra=200, M/N=20/20
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Figure 5.13
Temperature Contour
RePr=4, Ra=600, M/N=20/20
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Figure 5.15
Temperature Contour
RePr=4, Ra=1000, M/N=20/20
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Figure 5.22
Stream Function Contour
RePr=4, Ra=200, M/N=20/60
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Figure 5.23
Temperature Contour
RePr=4, Ra=200, M/N=20/60
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Figure 5.25
Temperature Contour
ReP=4, Ra=600, M/N=20/60
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5.3 Tracer RTDs and Contours

The response of the various steady state flows to a
rectangular pulse of tracer was observed for through-flow
cases. It was desired to correlate variations in the number
of cells, RePr, and Ra number with the form of the RTD.
RTDs for various cases, aspect ratio equal to one, are
presented in Figures 5.26 through 5.35.

Tracer concentration contours corresponding to the RTD
of Figure 5.29, RePr = 4, Ra = 200, M/N = 20/20 are
presented at successive times in Figures 5.36 through 5.47;
these contours allow the movement of tracer through the flow
to be followed. (Refer to Figures 5.10 and 5.11 for the
applicable stream function and temperature contours.)
Additional RTDs for variations in the aspect ratio are

presented in Figures 5.48 through 5.52.



T-3155

DIMENSIONLESS CO
20 30 40 50 60

5.

i of
DI

2 04 06 08 1.0 1.2 1.4 16
MENSIONLESS RESIDENCE TI
Figure 5.26
Residence Time Distribution
RePr=1, Ra=200 M/N=20/20, AT =.0001

T

1.8
ME

T

1
2.0

76



T-3155

l8i0 90 100 110 120 13.0 14.0
WS R Tt Y T vl Wy it Tt G W SO0

7.0
i

6.0
i

1

)

5.0

4.0

DIMENSIONLESS CONCENTRATION

20 3.0

1.0

0.0

1 14 I U 1 1 1 1 ! I

02 04 06 08 10 1.2 1.4 .16 1.8
DIMENSIONLESS RESIDENCE TIME
Figure 5.27

Residence Time Distribution
RePr=1, Ra=600, M/N=20/20, A71=.0001

T

2.0

77



T-3155

1

: 3L0 l 4L.0 X 5i0 . S.LO 1_7i0 , 8i0 , 9i0 . 19'01 1}.0 12.0

2.0

DIMENSIONLESS CONCENTRATION

J.

1 1 1 T

0.0 02
DIME

04 06 0.8 10 12 1.4 1.6 1.8 2.0
NSIONLESS RESIDENCE TIME
Figure 5.28
Residence Time Distribution
RePr=4, Ra=100, M/N=20/20, At=.0001



T-3155

1

| L

10.0 1}.0 12.0

1

7.0 80 9.0
11

3

30 40 50 6.0
U Y Tl SO R W

]

2.0

DIMENSIONLESS CONCENTRATION

!

!

1.0

1

i LS ) LB

1.6 1.8
TIME

1 1 ¥

0.0

T T YT |
4 1.0 1.2 2.0

0.0 0.2 04 06 08 1.4
DIMENSIONLESS RESIDENCE
Figure 5.29
Residence Time Distribution.
RePI=4, Ra=200' M/N=20/20' AT=00001



T-3155

J

|-

11.0 12.0

10.0
[

1

9.0

}

8.0
1.

1

7.0
i

]

. 6.0
i

30 40 5.0
R IR el A W

2.0

DIMENSIONLESS CONCENTRATION

.

1.0

]

I I i LB T

0.0

T T T T
0.4 08 10 12

0 02 0.6 '
DIMENSIONLESS RESIDENCE TI

Figure 5.30
Residence Time Distribution
RePr=4, Ra=600, M/N=20/20, AT=.0001

1.8
ME

T
2.0

1

80



T-3155

L 1,%01 6,0

3.0
1 |

2.0

DIMENSIO41;TLESS CoO

1.
—

1T 1

2.0

T 1 L}

oTé 04 06 08 10 12 1.4 16 1.8
DIMENSIONLESS RESIDENCE TIME

0.0

0.0

Figure 5.31
Residence Time Distribution
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Residence Time Distribution
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Figure 5.36
Tracer Concentration Contour
—~ =.057, RePr=4, Ra=200, M/N=20/20
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Figure 5.38
Tracer Concentration Contour
t*=,171, RePr=4, Ra=200, M/N=20/20

88



T-3155

Figure 5.39
Tracer Concentration Contour
T™*=.229, RePr=4, Ra=200, M/N=20/20
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Figure 5.40
Tracer Concentration Contour
T*=0286V, RePr=4, Ra=200’ M/N=20/20
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Figure 5.41
Tracer Concentration Contour
1+*=.343, RePr=4, Ra=200, M/N=20/20
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Figure 5.42
Tracer Concentration Contour
1*=.400, RePr=4, Ra=200, M/N=20/20
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Figure 5.43
Tracer Concentration Contour
1*=.457, RePr=4, Ra=200, M/N=20/20
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Figure 5.44
Tracer Concentration Contour
T*=¢514’ RePr=4, Ra=200, M/N=20/20
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Figure 5.45
Tracer Concentration Contour
T*=.571, RePr=4, Ra=200, M/N=20/20
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Tracer Concentration Contour
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5.4 Verification of RTD Results

5.4.1 Plug Flow

Plug flow results calculated by numerical techniques
can be compared to those predicted by theory. A graph of
the theoretical results for mass dispersion Peclet numbers
of 40, 160 and 400, corresponding to RePr = 1, 4 and 10 is
presented in Figure 5.53. Figure 5.54 presents the results
for the explicit upwind differencing method with a 20x20
grid. Figure 5.55 shows the improveﬁént in going to a 40x40
grid for RePr = 10. Figure 5.56 shows the result of using

an ADI method for a 20x20 grid.
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5.4.2 Convecting Flows

This section is included to illustrate the effects of
various parameters and numerical techniques on convecting
flow RTDs. Figures 5.57 and 5.58, together with Figure 5.31,
show the effect of varying time and spatial steps for a
sqguare grid, RePr=4, Ra=1000. Figures 5.59 and 5.60 show
the results using an ADI techpique for two cases. The cases
are RePr=4, Ra=200 (reference Figure 5.29 for the explicit
upwind differencing result) and RePr=4, Ra=1000 (Figure
5.31). Use of a larger grid, 30x30, for RePr=4, Ra =1000
was necessary with the ADI calculation as it was critically

unstable for a grid size of 20x20.
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6. DISCUSSION OF RESULTS

6.1 Detection of Free Convection and the Steady State
Plotting the log of the rms vorticity against time
provides a reliable indicator of when the steady state has
been attained. Combined with contours of the stream
function and temperature the presence or absence of free
convection can be ascertained. The time taken to achieve

steady free convection can also be found.

6.2 The Critical Rayleigh Number

A brief comparision of linear and energy theory with
the calculated results is presented to verify the numerical
method is substantially accurate. Theory predicts that the
onset of free convection in porous media is characterized by
a critical Rayleigh number, Ra., , for a given RePr. The
theoretical results of Homsy ahd Sherwood were graphically
presented in Figure 1.1 of the Introduciton. The graph is
duplicated in Figure 6.1 with points plotted for the cases
studied. All calculated convecting cases are in the
theoretical free convection region. All calculated
non-convecting cases are below the linear limit for the
onset of convection. Calculated results are in agreement

with theory.
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The numerical calculations were neither designed nor
expected to yield definitive determinations of the critical
Rayleigh numbers. Nevertheless, an attempt was made to
identify the critical Rayleigh number for the no-flow case,
RePr = 0, where the well-known result for porous media,
presented first by Lapwood [12] and refined by Katto and
Masuoko [13] is Racyr = 47°. The critical Rayleigh number
was estimated by plotting the slopes obtained for wvarious Ra
numbers from the Increase in Vorticity graph, RePr = 0, M/N
= 20/20 (Figure 5.1), against time and extrépolating to the
point of zero slope. The graph, presented in Figure 6.2
gives a critical Rayleigh number of about 52. However,
careful examination of data for small rates of growth
suggests that a fit over these points might well extrapolate

to a value closer to 47?2,

6.3 Stream Function and Temperature Contours

The presence of free convection was confirmed by the
observation of convecting cells in éhe'stream function
profiles. Both symmetrical.and asymmetrical flows were
observed. The number of cells increases with both Ra and
RePr. Flow contours for varied aspect ratios show an
increase in the number of cells for an increased width. For

an increase in height, RePr = 4, Ra = 200, the cells became

ARTHUR LAEKES LIBRARY
COLORADO SCHOOL of MINES
GOLDEN. COLORADO 80401
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narrower (M/N = 20/60) and subsequently merged (M/N =
20/20). For the case RePr = 4, Ra = 600, asymmetrical flow
with partially stacked cells was produced.

Inspection of the paired stream function and
temperature contours readily shows that the thermal gradient
is the driving force for free convection. In all cases, the
thermal gradient increases where upward flow is observed and
decreases with downward flow.

The direction of flow rotation consistently reversed in
going from no-flow to net>through-flow. (Reversal also
occurred for one of the aspect ratio cases.) There is no
credible physical reason, within the context of this
numerical study, for preferring clockwise to
counter-clockwise rotation, particularly for the single cell
cases. This phenomenon is not understood.

The ADI calculations are believed to be reasonably
accurate and represenative of steady state flow. The time
step, and spatial increment chosen are satisfactory. The
wisdom of the choice of the full grid rather than a
half-grid with symmetry at the centerline was borne out in

the results as asymmetrical flows were observed.

6.4 Analysis of the RTDs and Tracer Contours

The RTDs presented are in qualitative agreement with
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the experimental work of Feuerherm [16]. Plug flow RTDs
show the characteristic single peak. Flows with convection
have RTDs with multiple peaks.

Contour plots of the tracer concentration, Figures 5.36
through 5.47, show movement through the flow field in
agreement with the calculated RTD, Figure 5.29. The
successive peaks are seen to result from recirculation of
the tracer in the convection éells. Visual inspection'of
the RTDs indicates a dependance on RePr and Ra, and none on
the number of cells.

The RTDs were characterized in terms of a mixing time
given by the reciprocal of the decay rate constant, where
the decay rate constant is the absolute value of the slope
of the log of the amplitude as a function of time. This
parameter is widely used in mixing studies [2 ]. The
amplitude was determined by taking half the value of the
peak to valley distance. The first peak, first valley, and
last peak were dicounted. Results for an aspect ratio of
one are presented in Table 6.1. Graphs of the mixing time
vs. Ra number and RePr are presented in Figures 6.3 and 6.4.
They show a decrease in mixing time with increasing Ra
number and an increase with increasing RePr.

The RTD results are intermediate to the plug fiow and

perfectly mixed models. In general, the RTDs with high
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Table 6.1

Mixing Times for Various RePr and Ra, M/N=20/20

RePr Ra Mixing time T*

1 200 0.2122
600 0.0873

4 100 1.1783
200 0.7180

600 0.3099

1000 0.1655

10 400 1.0524
600 0.5172

1000 0.4490
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Figure 6.3
Mixing Time vs. Rayleigh Number
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Mixing Time vs. RePr
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mixing times approximate plug flow results. Those with low
mixing times approach the perfectly mixed vessel model.

RTDs for the various aspect ratios showed little change
in tracer reponse for an increase in width. (Using ADI
techniques the RTDs could be superimposed; the change
visible on the upwind differencing graphs is attributed to
numerical dispersion.) This result is in agreement with the
equations and the physical problem. An increase in height
reduces the mixing time. Mixing times for the different

aspect ratios are presented in Table 6.2 and in Figure 6.5.
6.5 Validity of the Tracer Response Calculations

6.5.1 Conservation of the Tracer Species

As'a check on the conservation of the tracer species,
and hence the precision of the numerical method, the area
under each RTD curve was measured and compared to one, the
value expected at infinite time. Results for plug flow were
exact, those for convecting flow, aspect ratio egqual to one,
are summarized in Table 6.3. Agreement was good in all

cases.

6.5.2 Plug Flow

The basic shape of the calculated upwind differencing
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Mixing Times for Various Aspect Ratios

Table 6.2

Aspect Mixing Time
M/N Ratio - T*

RePr = 4, Ra 200

20/60 0.333 0.4646

20/30 0.667 0.5439

20/20 1.000 0.7180

30/20 1.500 0.7137

60/20 3.000 0.7428
RePr = 4, Ra 600

20/60 0.333 0.0718

20/20 1.000 0.3099

123
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Figure 6.5
Mixing Time vs. Aspect Ratio (Width/Height)
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Table 6.3

Area Under the RTD Curve

RePr Ra Area E final
1 200 0.791 0.357
600 0.844 0.486

4 100 0.854 0.088
200 0.820 0.134

600 0.955 0.069

1000 0.995 0.014

10 200 0.848 0.079
400 0.831 0.101

600 0.853 0.123

1000 0.900 0.109
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plug flow RTDs is correct. Agreement with the theoretical
calculations is best at low RePr and increasingly worse at
high RePr. Two causes were investigated: size of the
spatial increment and the dispersive effects of artificial
viscosity inherent in the upwind differencing technique. A
smaller spatial increment was tested with RePr = 10 by
increasing the grid size from 20x20 to 40x40. Some
improvement in peak height is noted. Comparision of the
upwind differencing plug flow RTDs with the ADI results,
both generated on a 20x20 grid, suggests the dispersive
effects of the upwind differencing technique are the primary

cause of the low peak heights for plug flow.

6.5.3 Convecting Flows

The effects of spatial increment, time step, and
numerical technigque were tested on convecting cases.
Variations in spatial increment and time step (as presented
in Figures 5.31, 5.57 and 5.58) did not produce significant
differences. Comparision of the upwind differencing and ADI
methods - a check on the effects of numerical disperSion
associated with upwind differencing - shows general
agreement in the prediction of high/low mixing times
(Figures 5.29 and 5.59; 5.31 and 5.60). Also noted for the

ADI results is a substantial amount of noise, and for lower
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mixing times, considerable oscillations about zero. (The
effect of changing the pulse duration was also tested; no

difference was noted for values of Ntrace = 1 and 10. )

6.5.4 Summary

Based on the above comparision the results for
convecting flows were determined to be less affected by
numerical dispersion resulting from upwind differencing than
were the plug flow results. Explicit upwind differencing
was judged suitable for general predictions of the effect of
the RePr and Ra on the mixing time. ADI methods are
unsuitable, particularly at high mixing times, because of

excessive overshoot and oscillation.

6.6 Examples: Application to 0il Shale Retorts

Because work in dimensionless variables is difficult to
visualize in terms of physical problems, two examples -
represenative of pilot scale oil shale retorts - are
presented here. References and calculations for typical

values of the parameters may be found in Appendix A.

Example 1
Reference figures 5.2, 5.27 and Table 6.1.

Le = 40
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RePr = 1

Ra = 600

M/N = 20/20
Take the case where

Yy = 2x10”"

€ = 0.35

height = 1.0 m

@” = 0.0033 m’/sec

The superficial velocity, v,, may be obtained from the

relationship
ve, = RePr o~
° height (3.6-2)
Vo = 0.0033 m/sec

The time for the flow pattern to reach steady state is
obtained from Figure 5.2 in units of dimensionless time

Tgs = 1390
Since,

e

i
T =ty (2.1-22)

and

. _({N-1
he 1ght = (-Z—OTI) H

(3.6-4)
the actual time is
tes = 4.212x10° sec = 117.0 hr = 4.875 days

The residence time for the vessel, t, .5, is obtained from the
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relationship

€ (N—l )2
Tres RePr \20-1
and equation (2.1-22) as

tres = 106.1 sec

129

(3.6-5)

The mixing time in terms of dimensionless residence time is

obtained from Table 6.1
Tmix = 0.0873
Applying equation (2.1-22) and

T™* =

T RePr(zo.-_l)2
€ N-1

the mixing time is

thix = 9.259 sec

(3.6-3)

The time to the arrival of the first peak can be read from

Figure 5.27 as

Teax = 0.0191

and similarly be converted to

theak = 2.026 sec
Example 2
Reference Figures 5.3, 5.29 and Table 6.1
Le = 40
RePr = 4
Ra = 200

M/N = 20/20
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Take the case where

2x10 *

v

L}

€ 0.25
height = 3.0 m
a” = 0.0050 m?/sec
Proceeding as before, the superficial velocity is
Vo = 0.006667 m/sec
The time to reach steady state, using Figure 5.3, is
tgs = 2.448x10° sec = 680.0 hr = 28.33 days .
The residence time for the vessel is
tres = 112.5 sec
Using Table 6.1, the mixing time is
tnix = 80.77 sec

and the time to the first peak, using Figure 5.29, is

tpeak = 17.88 sec
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7. CONCLUSIONS

From the results obtained the following conclusions are
drawn:

a) The achievement of steady state can be verified

from plots of the natural log of the rms average

vorticity.

b) Points where convection was found are in agreement

with linear theory.

c) The number of cells increases with both increasing

RePr and Ra.

d) Both symmetrical and asymmetrical flow patterns are

possible.

e) ADI calculations are reasonably accurate and

capable of representing steady-state flows.

f) Tracer RTDs are in gqualitative agreement with the

experimental results of Feuerherm

g) Successive peaks in the RTDs result from

recirculation of tracer in the rotating convection

cells.

h) Tracer concentration contours are in agreement with

the RTDs based on the average exit age.

i) RTD results for free conveciton are intermediate to

the perfectly mixed vessel and plug flow cases.
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j) RTD results for free convection are characterized
by Ra, RePr and the height of the vessel. They are
independent of the number of cells and the vessel
width.
k) Mixing times increase with increasing RePr and
decrease with increasing Ra and increasing height.
l) The effects of numerical dispersion, inherent in
upwind'differencing, are most noticeable on plug flows
and of less importance with convecting flows.
m) Explicit upwind differencing is suitable for
producing a qualitative representation of tracer
response.
n) ADI methods alone are unsuitable for tracer
response calculations because of excessive overshoot
and oscillation.
In summation, RTD methods are decisive in detecting free
convection and capable of qualitatively characterizing the

"flow in terms of mixing times.
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NOMENCLATURE
A area under the concentration-time curve
ADI Alternating Direction Implicit; a numerical method
b subscript for bed properties
Cap concentration of tracer
Cao reference concentration of tracer
Cinitial ¢concentration of tracer in the impulse
Cp specific heat
D mass dispersion coefficient
E;nitial1 dimensionless tracer concentration
E dimensionless tracer concentration in the impulse
f subscript for fluid properties
g gtavity
G £ransfer function
h spatial increment
H reference length
i subscript for the horizontal direction
3 subscript for the vertical direction
3 unit vector in the vertical direction
k ‘thermal conductivity
K bed permeability
Le Lewis number

M number of grid points in the hoizontal direction
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Ntrace

OPTOM

Pl
P2
Pe
Ra
Ra
RePr

rms

UB

UF

134

superscript for time

number of grid points in the vertical direction
number of time steps for pulse duration
relaxation factor for SOR

pressure

parameter for Upwind Differencing

parameter for Upwind Differencing

Peclet number

Rayleigh number

critical Rayleigh number

Reynolds-Prandtl

root mean square

Successive Overrelaxation; a numerical method
time

residence time for the vessel

temperature

temperature at the top

temperature at the bottom

reference temperature difference
dimensionless horizontal component of superficial
velocity

backward difference in velocity U;

used in upwind differencing

forward difference in velocity U;
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VB

VF

K K >

™

Po
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used in upwind differencing

superficial velocity

initial superficial velocity

horizontal component of superficial velocity
vertical component of superficial velocity
dimensionless vertical component of superficial
velocity

dimensionless initial superficial velocity
backward difference in velocity V;

used in upwind differencing

forward difference in velocity V;

used in upwind differencing

distance in the horizontal direction
dimensionless distance in the horizontal direction
distance in the vertical direction
dimensionless distance in the vertical direction
effective thermal diffusivity

coefficient of volume expansion

impulse function

impulse function in dimensionless time

bed porosity

ratio of specific heats

density

density at temperature T,
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stream function

dimensionless stream function
dimensionless time

residence time for the vessel in dimensionless
terms

dimensionless residence time
dimensionless time step
dimensionless temperature difference
kinematic viscosity

vorticity

dimensionless vorticity

superscript for the intermediate time step, n+l/2
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APPENDIX A

TYPICAL PARAMETERS
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A.l1 Laboratory Scale 0il Shale Retort Parameters

Typical values for laboratory scale oil shalé retorts
were obtained from Raley, Sandholtz and Ackerman [18] for
1.5 x 0.3m and 6 x 0.9m retorts using Anvil Points shale.
They are presented in Table A.1l and A.2.

Bed permeabilities for the 1.5 x 0.3m shale 0il retort
may be calculated form Darcy's law by neglecting the effects

of gravity

_ VoV
K= (AP%AY)

For a nominal fluid viscosity of

vp = 0.041 g/m-sec
the permeability can vary from initial values of 7.34x10 °
to 1.83x10  * m? to values at maximum pressure drop of
5.03x107° to 1.60x10” ° m?.

Values of thermal conductivity and thermal diffusivity
for Anvil Points o0il shale are found in DuBow et al. [19].
Typical thermal conductivities range from 0.43 to 1.51

kcal/m-hroc at 380°C. Thermal diffusivities at 380°C vary

from 0.002 to 0.005 m?/sec

A.2 Experimental Velocities
Additional values for labortory scale packed bed reactor

velocities were obtained from Feuerherm [16]. They ranged
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Table A.2

0Oil Shale Parameters 6 x 0.9m Retort

Shale
Size, cm -7.6,+0 (61 wtsg)
=20 (39 wtsg).
Porosity 0.25
Gas Feed

m/sec 0.02
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from 0.000715 to 0.001001 m/sec.

A.3 Calculation of Effective Thermal Conductivity and
Diffusivity
The effectiye thermal conductivity in a packed bed may be
estimated from the procedure outlined by Yagi and Kunii
[20]. The effective thermal diffusivity may be obtained
from this value. A typical value is calculated. Using the
parameters

e = 0.35

P(emissivity) = 0.9

T = 700°C
the heat transfer coefficients for thermal radiation are

obtained. From solid surface to solid surface:

P (T+273)\°
0.1952 575 ( 100 >

brs

147.12

hrs

From void to void:

b o) 0.1952 T+273)°
2(1l-¢<) P
hyy = 174.59

The ratio of the effective thermal conductivity for a
motionless gas, kg, to the fluid thermal conductivity is

given by
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ke ke 1 € ke
Ks 1/¢ + dphrs/kf

Using the values

¢ = 0.025
ke = 0.0524
ks = 0.9

dp = 0.03

The calculated ratio is

kbo
Ke - 44.7927

0

ky = 2.347 kcal/m-hr C

For low flow rates the effective thermal conductivity of the
bed, k, is equal to that for motionless gas
kp = 2.347 kcal/m-hr &C

The effective thermal diffusivity may now be calculated from

- = Kb
¢ (pCp)f
for
pg = 0.000409 g/cm’

Cog = 0.26 cal/g<
the value is

o = 0.00613 m?/sec

A.4 Calculation of Rayleigh Number and RePr

The Rayleigh number is given by
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Ra = BOH(T)-T,)K
a v

Typical parameters are
g = 9.8 m/sec?
(T,-T,) = 70°C
K = 1x10 *m?/sec

@ = 0.005 m?/sec

v

1.002x107"m* /sec
H is the height; a value of 1.5 m is used. The coefficient
of volume expansion, B, is on the order of 107 to 107"%.
For ideal gases it is given by

B = 1/T
For a temperature of 700°C (= 973°%K), 8 = 0.001/°C. The
resulting Ra is

Ra = 205.4

A corresponding RePr can be determined from the

relationship

RePr = Vo height

o
for a velocity of 0.02 m/sec the RePr is
RePr = 6.0

This case would exhibit free convection.

A.5 Calculation of Lewis Number

A nominal value for the Lewis number was derived based
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on the relationship between the particle Reynolds number,
Rep, and the particle Peclet number, Pep, presented in
Himmelblau and Bishoff's Figure A.10 [21]. The Rep is

obtained from

_ RePr dp
Rep = 5T (height)

where the RePr is related to the superficial velocity by

RePr = Vo§?19ht

and the effective Prandtl number is obtained from the fluid
Prandtl number by

Pr = Prf%E

The effective Peclet number, Pe, and Lewis number for mass

dispersion, Le, are calculated from

H
Pe = Pe
Pay
_ Pe
Le = gepr

Using the values,
height = 3m
dp/height = 1/100
o® = 0.005 m7sec
Prs = 0.733
kp/kg = 44.7927

Lewis numbers were calculated for RePr's of 1, 4, and 10.
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Reference Table A.3. A nominal value of Le = 40 was

selected and used in all calculations.
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Table A.3
Calculation of Lewis Number
RePr Vo Rep 1/Pep Pep Pe Le
1 .00167 0.611 1.08 0.926 92.6 92.6
4 .00667 2.445 0.63 1.587 158.7 39.7
10 .01670 6.112 0.58 1.724 172.4 17.2

150
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APPENDIX B

COMPUTER PROGRAM
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B.1 Computer Executions

All executiéns were performed on a DECsystem—109l. The
CPU time for flow and tracer executions follows in Tables.
The maximum number of iterations in the successive
overrelaxation subroutine during an execution was typically
24,

All contour plots were generated using Surface II

Graphics System, Sampson [22].
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Table B.1l

CPU Times for Flow Executions

RePr Ra M/N CPU time (min:sec)
0 100 20/20 16:58
140 20/20 9:43
200 20/20 7:29
400 20/20 4:17
600 20/20 3:41
800 20/20 3:02
1 100 20/20 7:14
200 20/20 3:12
600 20/20 2:44
1000 20/20 1:15
4 100 20/20 12:26
200 20/20 3:09
' 20/30 4:59
20/60 10:59
30/20 5:12
60/20 9:16
600 20/20 1:28
1000 20/20 1:20
30/30 5:08
10 200 20/20 8:16
400 20/20 2:12
600 20/20 1:23
800 20/20 1:25

1000 20/20 2:27
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Tabel B.2

CPU Times for Tracer Executions

RePr Ra M/N CPU time (min:sec)

1 200 20/20 .0001 2:36
600 20/20 .0001 1:44
4 100 20/20 .0001 1:34
200 20/20 .0001 1:31

20/20 .0001 4:51 (ADI)
20/30 .0001 4:55
20/60 .0002 5:27
30/20 .0001 2:40
60/20 .0001 5:26
600 20/20 .0001 1:32
1000 20/20 .0001 1:31

20/20 .0001 8§:58 (ADI)
20/20 .00005 1:51
40/40 .0002 8:27
10 200 20/20 .0001 0:36
400 20/20 .0001 0:40
600 20/20 .0001 0:44

1000 20/20 .0001 0:38
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B.2 Flow Program: ADI

nooonNoooooo00O0ON0nN00

o0

100

onoon

120

130

—— - - - - " - e —— - —

MAIN PROGRAM FLOKW.FOR

INSTABILITY OF FLUID FLOW THROUGH POROUS MEDIA HEATED FRDH BELOW

SUCCESSIVE OVERRELAXATION SOLUTION FOR THE
STREAM FUNCTION
ALTERNATING-DIRECTION IMPLICIT SOLUTION FOR TEMPERATURE
TWO-DIMENSIONAL RECTANGULAR COORDINATES
‘UCI.J)’ VELOCITY IN THE X-DIRECTION
‘V(T.J)7 VELOCITY IN THE Y-DIRECTION
‘THETA(I,J)’ TEMPERATURE
‘PSI(I.J)’' STREAM FUNCTION
‘OMEGA(I.J)’ VORTICITY
FLOW EXECUTION REQUIRES THE FOLLOWING SUBROUTINES:
TEMP.FOR
SORLX.FOR
IMPX.FOR
TRIDX.FOR
IMPY.FOR
TRIDY.FOR

‘M’ IS THE X-DIRECTION INDEX
‘N° IS THE Y-DIRECTION INDEX

PARAMETER M=20
PARAMETER N=G60

‘K’ IS THE GREATER OF ’'M‘ AND ‘N~
PARAMETER K=60

‘L’ SPECIFIES WHERE TO WRITE
PARAMETER L=4

DIMENSION U(M,N),V(M,N), THETA(M.N) . TDELTA(M,N),
10MEGA(M N) ,OM(M.N),PSI (M, N),A(K)}  C(K) ,D(K},

16(K),QS(K) ., BETA(K) ,GAMMA(K) ,TH(N) ,POLD(M,N) . PS(M,N),P(M.N)
DOUBLE PRECISION THETA,Q.GS,TH.POLD,.PS.P,A,C.D,BETA,GAMMA

DOURLE PRECISION U.,V, TDELTA UHEGA OM.PST
cCoMmUN /BLK7 B,MM1.NM1.C1.C2.C3

WRITE(4,100)

FORMAT(SX., ‘ENTER TODAYS DATE'./)
READ(4,110)NDATE

FORMAT(I)

‘RA‘ IS THE RAYLEIGH NUMBER

‘REPR’ 1S THE REYNOLDS-PRANDTL NUHBER

‘DY’ 1S THE TIME INCREMENT

‘MAXSTP’ 1S THE MAXIMUM NUMBER OF TIME STEPS

WRITE(4,120)

FORMAT(SX. ‘ENTER RA. REPR., DT, MAXSTP'./)
READ(4,130)RA.REPR.DT,MAXSTP

FORMAT(3E.1)

155
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c ‘GAM’ 1S THE FLUID TO MEDIUM HEAT CAPACITY-DENSITY RATIC
Cc ‘Y0’ IS THE INITIAL SUPERFICIAL VELOCITY

GAM = 2.E-4

U0 = —REPR#(19.0/(N-1.0))
c ‘H’ 1S5 THE SPACE INCREMENT

MM = M

NN = N

MMl = M-1

MM2 = M-2

NM1 = N-1

NMZ2 = N-2

H = 1./(20.-1.)

RATIO = MM1/NMI

WRITE(4,140)RA,REPR,DT,MM,NN,RATIO
140 FORMAT(1H1.,//.,5X, ‘FLOW EXECUTION’,/9X, ‘RA="’,E/9X,

1 ‘REPR=',E/9X, ‘DT=*,E/9X, ‘X—-DIRECTION INDEX M=',

213/9X, ‘Y~DIRECTION INDEX N=',I13/9%, ‘ASPECT RATIO=',E)
c ‘C1‘., ‘C2‘, ‘C3’ AND ‘B’ ARE CONSTANTS IN THE ENERGY

c EQUATION

Ct = 1./7(H#H)

C2 = 2.%H

C3 = 2./(GAM#DT)
B = C3+2.+C1

cC SPECIFY INITIAL CONDITIONS FOR VORTICITY AND VELOCITY

10

12

T = O.
NTUNIT = 1

DO 10 J=1.,N
DO 10 I=1i.,M
OMEGA(I.J) = O,
CONTINUE

DO 12 I=1,M
U(I.1) =V0
U(I.N) = VYO

CONTINUE

c SUBROUTINE TEMP SPECIFIES THE INITIAL TEMPERATURE
Cc PROFILE

150

14
160

CALL TEMP(REPR,M,N,TH,THETA, ITEMP)

IF (ITEMP .EG. O) GO TO 14

WRITE(4,150)

FORMAT(9X, ‘UNIT STEP INITIAL TEMPERATURE DISTRIBUTION'./}

GO 70 186

WRITE(4.,160)

FORMAT(9X, 'STEADY STATE INITIAL TEMPERATURE DISTRIBUTION’,/)
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16

18

o0 o

20

22

aonon

30

32

CALCULATE INITIAL AND BOUNDARY CONDITIONS FOR STREAM FUNCTION

AM = MM1
DO 18 I=1.M
ZETA = VOX(AM/19.)%(0.5-(1-1)/AM)
FTOT = FTOT+ABS(ZETR)
DO 18 J=1.N
PSI(1,J3) = ZETA
CONT INUE
FRMS = FTOT/M
FT0T = O.

BEGIN ITERATIVE PROCEDURE

SUBROUTINE SORLX CALCULATES THE STREAM FUNCTION
FROM THE VORTICITY FIELD

DO 20 I=t.M
DO 20 J=1.N
OM(1.J) = -OMEGA(I.J)
CONTINUE

CALL SORLX(PSI.OM,M,N,H:.0010.1TER.RE,FRMS, ITMAX)
CALCULATE VELOCITY FIELD

DO 24 J=2,NM1
DO 22 I=2,MM1
U(Ied) = LPEICI,J+1)-PSI(I,4-1))/C2
V(I.J) = (=PSI(I1+1,J)+PSI(I-1,3))/C2
CONT INUE '
V(L. ) = U2,
UM, ) = U(MMILJ)
CONT INUE

‘NSTEP‘ 1S THE STEP NUMBER
TERMINATE COMPUTATION IF NSTEP EXCEEDS MAXSTP
INCREMENT TIME STEP BY ONE

NSTEP = NSTEP+1
IF (NSTEP .GT. MAXSTP) GO TO 2
T = T+DT

DETERMINE TEMPERATURE FIELD AT THE NEW TIME STEP WITH
SUBROUTINES IMPX. IMPY. TRIDX. AND TRIDY

DO 30 I=1.M

DO 30 J=1,N

POLD(I.J) = THETA(1.J)
CONTINUE

caLL lHPX(POLD.PS-U-U.H.N.A.t-DoGSvBETA.GAﬂNA)

CALL IMPY(PS,THETA:.U)V.M.N,A,.C.D.QG,NM2,BETA,GAMMA)
CALCULATE VORTICITY FIELD

DO 32 J=2.NM1

DO 32 I=2.MM1
OMEGA(I.J) = RA®*(THETA(I+1,J)-THETA(I-1,J))/C2

CONTINUE
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c CALCULATE RMS AVERAGE VORTICITY

OMTOT = O,

DO 34 J=2,NM1
DO 34 I=2,MMI
OMTOT = OMTOT+ABS(OMEGA(1.J))
34 CONTINUE

OMRMS = OMTOT/(NM2*MM2)
OMLN = ALOG(OMRMS)
WRITE(10,300)T,0MLN
300 FORMAT(2X,.2E19.12)
NOMEGA = NOMEGA+!
IF (NOMEGA .NE. 10) GO TO 36
NOMEGA = O
WRITE(4,310)NSTEP.T,0OMLN
310 FORMAT (1X, ‘NSTEP="',15,2X, ‘TIME=",E13.6.,2X, ‘OMLN=',E12.85)

c OPTIONAL PLOTS OF STREAM FUNCTION AND TEMPERATURE
c CONTOURS

36 NPLOT = NPLOT+}
IF (NPLOT .EG. SO) GO TO 38
GO 70 1 '
38 NPLOT = ©
WRITE(4,320)
320 FORMAT(//2X, ‘TYPE 1 FOR CONTOURS’,/)
READ(4,330)NFP
330 FORMAT(I)

IF (NP .NE .1) GO TO 1
c OPTIONAL EXIT

WRITE(4,400)

400 FORMAT (10X, ‘TYPE 1 TO ESCAPE PROGRAM EXECUTION'./)
READ(4.,410)NEXIT
410 FORMAT(I)

IF (NEXIT .EG. 1) GO 70 2

c OPTIONAL GENERATION OF DATA FILES BEFORE STEADY STATE
Cc IS REACHED

IF (NTUNIT .GT. 2) GO 70 1
IF (NTUNIT .EG. 2) GO 7O 40
WRITE(4,420)

420 FORMAT (10X, ‘TYPE 1 FOR OPTIONAL TRACER DATA NO.17./7)
READ(4,410)NOPT1
IF (NOPT1 .EQG. 1) GO TO 3
GO TO 1

40 WRITE(4.,430)

430 FORMAT (10X, ‘TYPE 1| FOR OPTIONAL TRACER DATA ND.2'./)

READ(4.8410)NCPT2
IF (NOPT2 .EG. 1) GO TO 4
GO 70 1
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C EXIT AT THE STEADY STATE

2 WRITE(4,500)NSTEP, T, ITMAX

500 FORMAT(1H1.,/7/5X, ‘END OF EXECUTION‘,/9X.,
1 ‘NUMBER OF TIME STEPS=',1/9X,'TIME="‘,
2E/9X., ‘MAXIMUM ITERATIONS IN SORLX=‘,I)

c CREATE FOR15.DAT FOR STREAM FUNCTION CONTOUR
€ AT STEADY BTATE

DO SO J=1.N

JJ = N+i-J
WRITE(39.,510)(PSI(I,JJ),1=1,M)
80 CONT LNUF
S10 FORMAT(I1X.F22.186)

WRITE(39,.140)RA.REPR.DT,MM,NN,RATIO
WRITE(38.:520)T,NDATE

520 FORMAT(S5X, ‘STREAM FUNCTION DATA’,/9X.’'FLOW TIME="',
1 E/SX, ‘TODAYS DATE ‘,1I1)

c CREATE FOR17.DAT FOR TEMPERATURE CONTOUR
C AT STEADY STATE

DO 52 J=1/N

JJ=N+1-J
WRITE(49,530)(THETA(I . JJ),I=1.,M)
52 CONTINUE
S30 FORMAT(IX,5F10.4)

WRITE(49,140)RA,REPR,DT .MM, NN,RATID
WRITE(49,540)T.NDATE

540 FORMAT (SX., 'TEMPERATURE DATA',/8X, 'FLOW TIME=',E/9X,
1 ‘TODAYS DATE ‘.I)

c CREATE FORO3.DAT FOR VELOCITY COMPONENTS AT
c STEADY STATE
c USED FOR TRACER RESPONSE EXECUTION

DO 54 J=1.N
WRITE(S.,550)(U(I,J).I=1, M)
S4 CONTINUE

DO 56 J=1.N
WRITE(S,5350)(V(I.,J).I=1.M)

56 CONTINUE

550 FORMAT(2X.,5E18.12)
WRITE(9,560)RA,REPR,MM,NN, T.NDATE

560 FORMAT(2X,2E19.12,213,£19.12.,16)

WRITE(S,140)RA,REPR.DT,MM,NN., RATKO
WRITE(S,570)T.NDATE

570 FORMAT(3X. ‘VELOCITY DATA FOR U AND V COMPONENTS'./9X.,
1 ‘FLOW TIME=',E/9X, ‘TODAYS DATE ‘,I)
GO T0 S

C OPTIONAL DATA NO.1

3 DO 60 J=i.N
WRITE(7.550)(U(1.J),1I=1.,M)
60 CONTINUE
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62

64

66

DO 62 J=1.N
WRITE(7,550)(V(I,J),T=1,M)

CONTINUE

NTUNIT = 2

WRITE(7.,560)RA.REPR, MM, NN, T,NDATE

WRITE(7,140)RA,REPR,DT,MM,NN.RATIO

WRITE(7,570)T,NDATE

DO 64 J=1.N
JJ = N+i-J
WRITE(37.310)(PSI(I,JJ)sI=1,M)
CONTINUE
WRITE(37,140)RA,REPR,DT,MM,.NN.RATIO
WRITE(37.520)T,NDATE

DO 66 J=1:N
JJ = N+1-J
WRITE(47.330)(THETA(I.JJ) I=1, H)
CONTINUE
WRITE(47,140)RA,REPR,DT .MM/,NN,RATIO
WRITE(47,540)T,NDATE

GO 70 1

c OPTIONAL DATA NO.2Z

4 DO 70 J=1.N
WRITE(B,S5S0)(U(I,J),I=1.,M)

70 CONTINUE

DO 72 J=1.N
WRITE(B,550)(V{(I,J),I=1,M)

72 'CONTINUE
NTUNIT « 3
WRITE(B,560)RA,REPR,MM,NN, T.NDATE
WRITE(B,140)RA.REPR,DT.MM.NN,RATIO
WRITE(B,570)T,NDATE
DO 74 J=1.N

JJ = N+1-J
WRITE(38.510)(PSI(I,JdJ),I21,M)

74 CONTINUE
WRITE(38,140)RA,REPR.DT,MM.NN,RATID
WRITE(38,520)T,.NDATE
DO 76 J=1.,N

JJ = N+1-J
WRITE(4B,S530)(THETA(I,.JJ) ., 1=1,M)

76 CONTINUE
WRITE(48:140)RA.REPR,DT,MM,NN.RATIO
WRITE(48,540)T.NDATE
GO TO 1

c EXIT
WRITE(10,140)RA.REPR.DT,MM, NN, RATIO
WRITE(I0,B00 FNDATE "

800 FORMAT(SX., ‘NSTEP,T.OMLN DATA‘,/BX. ‘TODAYS DATE

END

‘b 1)
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59

69

79

838

SUBROUTINE TEMP(REPR.,M,N.TH, THETA, ITEMP)
PROGRAM TEMP.FOR
CALCULATES THE XNIT!AL TEMPERATURE PROFILE
DIMENSION TH(N),.THETA(M,N)
DOUBLE PRECISION TH,THETA
COMMON /BLK/ B.,MM1,NM1.C1.C2.C3

NEXT STATEMENT ACTIVE FOR UNIT STEP INITIAL
TEMPERATURE DISTRIBUTION

INACTIVE FOR STEADY STATE PROFILE IN THE ABSENCE
OF FREE CONVECTION

ITEMP = §
GO TO 48

ITEMP = O

H = 1./(N-1.)

ABSRE = ABS(REPR)

IF (ABSRE .LT. 10.£-5) GO TO Z8
IF (REPR .GT. S50.) GO TO 49

If (REPR .LT. -50.) GO TO 69

DO 18 J=1/N

Y = 1.=(J=-1.)*H

TH(J) = (EXP(REPR*Y)-1.)/(EXP(REPR)-1.)
CONTINUE
GO TO 88

DO 38 J=1,N
TH(JY = 1.-(J=1.)%H

CONTINUE

GO TO 88

TH(1Y = 1.
DO S9 J4=2.
THO) =

CONTINUE
GO TO BS

DO 79 J=1,NMi
TH(J) = 1.

CONTINUE

TH(N)Y = O.

DO 89 J=1.,N
DO 99 I=1.M
THETA(I.J) = TH(J)
CONTINUE :

RETURN
END
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SUBROUTINE SORLX(F.Q,M.,N, H ERRMAX, ITER.RE . FRMS, ITMAX)

-

[ et D L D B

c PROGRAM SORLX.FOR
c SUCCESSIVE OVERRELAXATION SOLUTION OF POISSON‘S
c EQUATION FOR THE STREAM FUNCTION

DIMENSION F(M.N),.Q(M.N)
COMMON /BLK/ B,MM1,NM1,C1,C2,C3
DOUBLE PRECISION F.Q

c CALCULATE THE RELAXATION FACTOR., OPTOM

PI = 4.#ATAN(1.)

ALPHA = COS(PI/M)+COS(PI/N)

OPTOM = (8.-4.%*SORT(4.-ALPHA#%2))/ALPHA##2
ITER = O

FBC = 0.
DO 10 I=1,M
FBC = FBC+ABS(F(I,1))+ABS(F(I.N))

10 CONTINUE
DO 12 J=2,NMl
} FBC = FBC+ABS(F(1,J))+ABS(F(M,J))
12 CONTINUE
Cc BEFORE EACH ITERATION ADD ONE TO ITER

ITER = ITER+1

2 .
ERROR = O,
FTOT = FBC

C CALCULATE F(I.J) AT INTERIOR POINTS

DO 3 J=2,NM1
DO 3 I=2,MMI

FOLD = F(1.,J)

F(I,J) = F(l,J)+.25#0PTOM®(F(I-1,J)+F(I+1,J)
1 +F (I J=1)4F(1,J+1)-4 . #F(I,J)-HeH*Q(I.,J))

ERROR = ERROR+ABS(F(I.J)-FOLD)

FTOT = FTOT+ABS(F(1.J))
CONTINUE

w

CONVERGENCE TEST

0

IF (ITER .LT. S) GO TO 2
IF (ITER .EG. 30) GO 70 .7
ERTEST = FTOT#ERRMAX
IF (ERROR .GT. ERTEST) GO TO 2
7 FRMS = FTOT/(N#M)
IF (ITER .GT. ITMAX) ITMAX =ITER

RETURN
END
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 SUBROUTINE IMPX(POLD,P8.U,V.M,N,A.C.D.GS.BETA,GAMMA)
Commmm—ae e ———————————— —— - ——
c PROGRAM IMPX.FOR
C X-IMPLICIT HALF OF ADI SOLUTION, DETERMINES TEMPERATURES
€ UPStIi’ AT TIME -“T¢(1729D7T* BY SOLVING FOR THE “ATTY ., ~
c ‘B’, ‘C{I)’» AND ‘D(I1)’ COEFFICIENTS OF A TRIDIAGONAL MATRIX
Cmmmm e e e ——————————————————————

31

41

DIMENSION POLD(M.N),PS(M,N),GEB(M) U(M.N) ,V(M,N),A(M),
ic(Mm).D(M)

DIMENEION BETA(M).GAMMA(M)

DOUBLE PRECISION POLD.PS.GS.A,C.D.BETA,GAMMA

DOUBLE PRECISION U.V

COMMON /BLK/ B,MM1,NM1.,C1.C2.C3

SET TEMPERATURE AT THE ENTRANCE AND EXIT,
‘PS(I-,1) AND ‘PS(I,N)’

DO 01 I=1,M
PS(I,1) = POLD(I.1)
PS(I.N) = POLD(I,N)

CONTINUE

FOR EACH ‘J’., DETERMINE THE NEW TEMPERATURES ‘PS(I.J)~’
FOR I=1 THROUGH I=M

DO 11 J=2,NM!
DETERMINE COEFFICIENTS OF NEIGHBORING POINTS

DO 21 I=2,MM1

A(I) = -U(I-1,J)/C2-C1
- C(I) = U(I+1,J3/C2-Ct
CONTINUE .

DETERMINE VALUE OF KNOWN QUANTITY “‘D(I)°

DO 31 I=1.,M
D(I) = C3#POLD(I,J)+(=VU(I,J+1)#POLD(I,J+1)+U(I,J~1)#
1 POLD(I,J-1))/C2+C1#(POLD(I,J+1)-2.#POLD(I.J)+
1 POLD(1,J-1))
CONTINUE

CALL SUBROUTINE TRIDX TO SOLVE TRIDIAGONAL MATRIX
CALL TRIDX(GS.,A.C,D.M,BETA,GAMMA)

ASSIGN VALUES OF SINGLE-INDEX ARRAY TO TWO-DIMENSIONAL
ARRAY

DO 41 [=2,MM1
PS(I,J) = @S(I)
CONTINUE

163



c SET NEW TEMPERATURES AT THE WALLS, ‘PS(1.,J)°
c AND ‘PS(M.,/J) " - o

PS(1.J) = PS(2.J)
PS(M,J) = PS(MM1,J)
11 CONTINUE

RETURN
END

SUBROUTINE TRIDX(G,A.C.,D.M.BETA.GAMMA)
Cmmmr e e e e e e ———
c PROGRAM TRIDX.FOR
c SOLUTION OF A TRIDIAGONAL MATRIX IN ‘G(M)‘, GIVEN ‘A(M)‘,
c ‘B’y ‘C(M)‘, AND ‘D(M) "’
C

DIMENSION Q(M),A(M).C(M),D(M).BETA(M).,GAMMA(M)
. DOUBLE PRECISION G.A.C,D,BETA.GAMMA
COMMON /BLK/ B.,MM1,NM1,C1.C2,C3

C DETERMINE RECURSION CONSTANTS ‘BETA’ AND ‘GAMMA

BETA(2) = B+A(2)
GAMMA(2) = D(2)/BETR(Z)

DO 10 K=3,M-2
BETA(K) = B-(A(K)I#C(K-1)/BETA(K-1))
GAMMA(K) = (D(K)-A(K)*GAMMA(K-1))/RETA(K)
10 CONTINUE
BETA(MM1) = B4+C(MM1)—-(A(MMI1)%C(M-2)/BETA(M-2))
GAMMA(MML) = (D(MM1)-A(MM1)*GAMMA(M-2))/BETA(MML)

c DETERMINE 'G(K) '

Q(MM1) = GAMMA(MML1)
DO 20 KK=2.M-2
K = M-KK
B(K) = GAMMA(K)-C(K)*#Q(K+1)/BETA(K)
20 CONTINUE )

RETURN
END
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SUBROUTINE IMPY(PS.P,U.V,M,N,A,C.D.G.NM2,BETA,GAMMA)

[ o4 PROGRAM IMPY.FOR

C Y=-IMPLICIT HALF OF ADI SOLUTION. DETERMINES TEMPERATURES
c ‘P(I,J)Y° AT NER TIME STEP BY SOLVING FOR THE ‘A(I)’, ‘B‘,
c ‘C(I)’, AND ‘D(I)‘ COEFFICIENTS OF A TRIDIAGONAL MATRIX

DIMENSION PS(M/N),P(M.N) G(N),UM.N) ,U(M,N) AN, C(N),D(N)
DIMENSION BETA(N),GAMMA(N)

DOUBLE PRECISION PS.P.G,A,C,D.BETA.GAMMA

‘DOUBLE PRECTSTON UV~

COMMON /BLK/ B.,MM1.,NMi.C1.C2.C3

c SET TEMPERATURE AT THE ENTRANCE AND EXIT

DO 02 I=1.,M
P(I,1) = PS(I,1)
P(I.N) = PS(I.N)
02 - CONTINUE

c FOR EACH ‘I’, DETERMINE THE NEW TEMPERATURES ‘P(I.J)’
C FOR I=1 THROUGH I=M

DO 12 I=2,MM1
Cc DETERMINE COEFFICIENTS OF NEIGHBORING POINTS

DO 22 J=2,NM1
A(JY = -U(I,J-1)/C2-C1
C(Jy = V(I.,J+1)/C2-C1

[ DETERMINE VALUE OF KNOWN QUANTITY ‘D(J)”

D(J)Y = CI#PS(I, J)+(~U(I+1,J)#PS(I+1,J)+U(I-1,J)#PS(I-1,J)
1 Y/C2+CI#(PS(I+1,J)-2.#PS(I,J)+PS(I-1,J))
22 CONTINUE

D(2) = D(2)-A(2)#PS(1,1)
D(NM1) = D(NM1)-C(NM1)#PS(I.,N)
A(2) = O,

C(NM1) = O.

C  CALL SUBROUTINE TRIDY TO SOLVE TRIDIAGAONAL MATRIX
CALL TRIDY(G.A.C.D.N.BETA.GAMMA)

c ASSIGN VALUES OF SINGLE-INDEX ARRAY TO TWO~-DIMENSIONAL
c ARRAY

DO 32 J=2.NM1
PCIJ) = GCI)
32 CONTINUE

12 CONTINUE
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42

10

20

SET NEW TEMPERATURES AT THE WALLS, ‘P(1.J)°
AND ‘P(M,J)

DO 42 J=2,NM1
P(1,J) = P(2.,J)
P(M,J) = P(MM1.J)

RETURN
END

SUBROUTINE TRIDY(Q@.A.C+D.N,BETA.GAMMA)

PROGRAM TRIDY.FOR
SOLUTION OF A TRIDIAGONAL MATRIX IN ‘Q(N)‘, GIVEN ‘A(N) ‘.,
‘B’ AND ‘C(N)’, ‘D(N)’ '

DIMENSION G(N),A(N),.C(N),D(N),.BETA(N) . .GAMMA(N)
DOUBLE PRECISION G,A,C.D.BETA,GAMMA
COMMON /BLK/ B.,MM1,NM1,C1.C2,C3

DETERMINE RECURSION CONSTANTS ‘BETA’ AND ‘GAMMA’

BETA(2) = B
GAMMA(2) = D(2)/BETA(2)

DO 10 K=3,NM1
BETA(K) = B-(A(K)#C(K-1)/BETA(K-1))
GAMMA(K) = (D(K)-A(K)*GAMMA(K=-1))/BETA(K)
CONTINUE

DETERMINE ‘Q(K)’

G(NM1I) = GAMMA(NMI1)
DO 20 KK=2,N-2

K = N-KK

G(K) = GAMMA(K)-C(K)*Q(K+1)/BETA(K)
CONTINUE

RETURN
END
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B.3 Tracer Program: Explicit Upwind Differencing
c _____ - - - -
C  MAIN PROGRAM T2UP.FOR
C TRACER RESPONSE SOLUTION AT STEADY STATE
C EXPLICIT UPWIND DIFFERENCING SOLUTION
C  THO-DIMENSIONAL RECTANGULAR COORDINATES
C. ‘UC1,J)’ VELOCITY IN THE X-DIRECTION
€ ‘V(I.J)’ VELOCITY IN THE Y-DIRECTION
C  ‘ECONC(I.J)‘ DIMENSIONLESS CONCENTRATION
C  VELOCITY COMPONENTS U, U FROM FLOW EXECUTION
c DATA FILE FORO3.DAT
C  T2UP EXECUTION REQUIRES THE FOLLOWING SUBROUTINES:
c SET2.FOR
c UP2.FOR
C—————-——————————————————————-———-—-——-— —————————————————————————————————
o ‘M’ IS THE X-DIRECTION INDEX
C ‘N’ IS THE Y-DIRECTION INDEX
PARAMETER M=20
PARAMETER N=G60
€C ‘K’ IS THE GREATER OF ‘M’ AND ‘N*
PARAMETER K=EO
PARAMETER LC=15
o4 ‘LE’ 1S THE NUMBER OF CONTOURS SPECIFIED
DIMENSION NEONT(LE}
DIMENSION U(M.N).U(M,N),ECONC(M,N),POLD(M,N),PS(M,N),
1P(M/N),A(K).C(K),D(K),G(K),QS(K),BETA(K) ,GAMMA(K)
DIMENSION VI(M,N),V2(M,N)} , US(M,N) ,UIT(M,N), U2(M,N),U3(M,N)
DOUBLE PRECISION U.,UV,ECONC,POLD.PS.P-A,C+,D,(.GS,BETA.GAMMA
DOUBLE PRECISION V1,V2,V3,U1,U2,U3
DOUBLE PRECISION UF,UFA.,UB,UBA,VF,VUFA,VB,VBA
COMMON /BLK/ 8,MMI,NM1,Ct.C2,C3
bATA NCONT/30,40,50,70,90.120,140,180.,180,200,210,
1230,2350,270.300/
LL = 21
C  ‘XLE IS THE LEWIS NUMBER
C ‘EPS’ 1S THE POROSITY
C ‘DT’ IS THE TIME INCREMENT
C  ‘NTRACE’ SPECIFIES THE DURATION OF THE INPUT
c PULSE IN TIME INCREMENTS
XLE = 40.0
EPS = 0.35
DT = 0.0002
NTRACE = {0
NT = NTRACE+1
C  ‘MAXSTP‘ IS THE MAXIMUM NUMBER OF TIME INCREMENTS
WRITE(4.,100)
100 FORMAT (SX, ‘ENTER MAXSTP‘,/)

110

READ(4,110)MAXSTP
FORMAT(I)

167
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c ‘H’ 18 THE SPACE INCREMENT

MM=M
NN=N
WRITE(4,120)MM /NN
120 FORMAT(SX, ‘M, THE X-DIRECTION INDEX =’,I3,3X,

1’N. THE Y-DIRECTION INDEX =',13/)
WRITE(4,130)DT
130 FORMAT(SX, ‘DT=',E13.8/)
MM1=M-1
MM2=M-2
NM1=N-1
NMZ=N-2
Hel./7(20.-1.)
RATIO=MM1 /NM1

c ‘C1’, ‘C2‘. 'C3‘:. AND ‘B’ ARE CONSTANTS

DT/ (2.#EPB#H)

cz DT/ (EPS#XLE*H#*H)
c3 2.%EPS/DT

B = C3+2.#%Ct

C1

c READ VELOCITY COMPONENTS U. V FROM DATA FILE
c GENERATED BY FLOW EXECUTION -

DO 10 J=i.N
READ(3,140)(U(I,J),I=1,M)
10 CONTINUE

DO 12 J=1.N
12 CONTINUE
140 FORMAT(2X,5E19.12)

C SUBROUTINE SET2 CALCULATES THE UPWIND
c DIFFERENCING VELOCITIES

CALL SET2(U.,V,M,N.U1,U2,U3,V1,V2,V3,
1UF,UFA,UB.UBA,VF,VFA,VUE,VBA)

READ(3,150)RA,REPR,MM,NN,FT,NDATE

150 FORMAT(2X.,2E19.12,213,E18.12,16)
WRITE(4.160)RA.REPR,MM.NN,FT.NDATE

160 FORMAT(SX, "FROM FLOW EXECUTION :’./9X, ‘RA=‘’,E/9X, '‘REPR=",E/BX.,
1 ‘M=, 1/9X, ‘N=",1/9X, 'TIME=',E/SX, ‘DATE ‘.1/)

c ‘DTAU’ THE INCREMENT FOR DIMENSIONLESS RESIDENCE TIME

T = 0.0 .
DTAU = (DT#REPR/EPS)#((19.0/(N-1.0))%%2_,0)

Cc ‘EINIT’ THE INITIAL DIMENSIONLESS CONCENTRATION

EINIT = (EPS/(REPR#DT#NTRACE))®#(((N-1.0)/19.0)#%2,0)
WRITE(4,900)EINIT
800 FORMAT(3X., * EINIT=‘,E/)

DO 14 I=f.,M
ECONC(I,N) = EINIT
14 CONTINUE
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c ‘NSTEP‘ 1S THE STEP NUMBER )
c TERMINATE COMPUTATION IF NSTEP EXCEEDS MAXSTP
Cc INCREMENTY TIME STEP BY ONE

NSTEP = NSTEP+1
IF(NSTEP.GT.MAXSTP) GO TG 3
T = T+DTAU

IF(NSTEP .NE. NT) GO TO 22

-

“DO 207 T¥LTM
ECONC(I.N) = 0.0
20 CONTINUE

c DETERMINE CONCENTRATION FIELD AT THE NEW TIME STEP WITH
c SUBROUTINE UP2

22 DO 24 I=1,M
DO 24 J=1.N
POILD(I,J) = ECONC(I.J)
24 CONTINUE

CALL UP2(POLD.,ECONC,U1,U2,U3,V1,V2,VU3.M,N)
c DETERMINE AREA UNDER THE RTD CURVE

NETOT = NETOT+!
IF(NETOT .EG. 1) GO TO 30
GO 7O 1

30 NETOT = O
ETOT = O.
DO 32 1=1.,M
ETOT = ETOT+ECONC(I,1)}
32 CONTINUE
EAVG = ETOT/M
AREA = AREA+(DTAU*EAUG)

Cc CREATE FOR12.DAT FOR AVERAGE EXIT CONCENTRATION, TIME

WRITE(12,300)7,EAVG,AREA
300 FORMAT(2X.3E19.12)

NPLOT = NPLOT + 1
IF(NPLOT .NE. 10) GO 7O 1

NPLOT = O
WRITE(4,310)NSTEP,T,EAVG
310 FORMAT(2X . '‘NSTEP=',15,2X, ‘TIME="',E13.6.,2X, ‘EAVG=',E13.6)
C CREATE DATA FILES FOR TRACER CONCENTRATION CONTOUR
c PLOTS ’
Cc DO 44 Ls=i1.LC
C IF (NSTEP .EQ. NCONT(L)) GO TO 46
Ca4 CONTINUE
GO 70 2
46 WRITE(4,420)
420 FORMAT (10X, ‘CONTOUR *, /)

, LIBRERY
-oR LAXES LIBRARL
Aggmo QCHCOL of mzra&
Cgéwm. cOLORADO 80
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L. = L+t
DO 42 J=1.,N
JJ = N+¥i-J
WRITE(LL,430)(ECONC(I,JJ) I=1.,M)
42 CONTINUE
430 FORMAT(1X.5F12.6)
WRITE(LL.,160)RA,REPR,MM,NN,FT,NDATE
WRITE(LL,440)T .
440 FORMAT(S5X, ‘FLOW TIME FOR TRACER EXECUTION=',E)
GO TO 2

c OPTIONAL EXIT

2 WRITE(4,700)

700 FORMAT (10X, ‘TYPE 2 TO ESCAPE PROGRAM EXECUTION'./)
READ(4.,710)NEXIT

710 FORMAT(I) )
IF(NEXIT .EQ. 2) GO TO 3
GO 70

3 WRITE(12,800)

80O FORMAT(SX., ‘T.EAVG DATA’)

WRITE(12,160)RA,REPR,MM.,NN.FT,NDATE
AREA = AREA-(DTAUEAVG/2.0)
WRITE(4,810)AREA

810 FORMAT (2X, ‘AREA UNDER CURVE= ',E)

END
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BUBROUTINE S8ET2(U,V.M,N.,U1,U2.,U3,V1.,V2,V3,
1UF ,UFA.UB,UBA,VF,VUFA,VB,VBA)

C PROGRAM SETZ.FOR
c CALCULATES THE UPWIND DIFFERENCING VELOCITIES

c EXPLICIT SOLUTION

DIMENSION U(M.N),V(M.N),UT(M.N) U2(M,N), U3(M.N) VI(M,N),V2(M,N).,
1US(M.N)

DOUBLE PRECIBION U,V.,U1,U2,U3,V1.,V2,V3

DOUBLE PRECISION UF.UFA,UB.UBA .VF,VUFA.VB,VUBA

COMMON /BLK/ B.MM1,NM1.,Ct.C2,C3

DO 10 J=2,.NMi1
DO 20 I=2.MM1

UF = (UCI+1,J)+U(1.J))/2.0
UFA = ABS(UF)

UB = (U(I-1,J)+U(1.,J))/72.0
UBA = ABS(UB) : :

UF - e- Iy UL T 43 /20
VUFA = ABS(VF)

VB = (U(1,J-1)+VU(1.4))/2.0
VBA = ABS(VB)

(UF-UFA)+C1
(UF+UFA-UB+UBA)*C1
(UB+UBA)Y*C1
(VF-VFA)+C1
(UF+VUFaA-UR+UBA) #C1
(UB+VBA)%C1

uier, J)
uzcr.d
U314}
Viil.Jd)
V2(I.,J)
U3(1.J)

Wwnaen 0w

20 CONTINUE
10 CONTINUE

RETURN
END
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SUBROUTINE UP2(POLD.ECONC.,U1.U2,U3,V1,V2,V3,M:N)

c
C PROGRAM UP2.FOR

c EXPLICIT UPWIND DIFFERENCING SOLUTION FOR TRACER
c CONCENTRATION AT THE NEW TIME STEP

Cc

e — e = " e e — — e =~ —— o~ ——— — - — — o T - —

DIMENSION POLD(M,N) ECONC(M,N) UT(M.N),U2(M,N),U3(M.N)
DIMENSION V1 (M.N),V2(M,N),VI(M/N)

DOUBLE PRECISION POLD.ECONC

DOUBLE PRECISION U1.U2,U3,V1,VU2,V3.P1.P2,P4

COMMON /BLK/ B,MM1.NM1.C1.C2.C3

DO 10 I=t,M
ECONC(I,N) = POLD(I,N)
10 CONTINUE

DO 20 I=2,MM1
DO 20 J=2.NMi

Pl = UI(I.J)#POLD(I+1,J)+U2(1,J)%POLD(I,J)-U3(1.,J)=«POLD(I-1,.0)
P2 = Vl(X-J)*POLb(I.J+1)+UZ(I:J)¢POLD(1-J)-U3(I'J)GPOLD(XcJ-l)

P4 = POLD(I+1,J)+POLD(I-1,J)+POLD(I,J+1)+POLD(I,J-1)~
1 4.0%POLD(1.,J)

ECONC(I.,J) = POLD(I,J)-P1-P2+(C2%P4)

20 CONTINUE
DO 30 J=2.NM1
ECONC(1.,J) = ECONC(2.4) .
ECONC (M, J) = ECONC(MM1.,J)
30 CONTINUE

DO 40 I=1.M
ECONC(I.1) = ECONC(I.2)
40 CONTINUE

RETURN
END
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Tracer Problem: ADI

MAIN PROGRAM T2.FOR
TRACER RESPONSE SOLUTION AT STEADY STATE
ALTERNATING-DIRECTION IMPLICIT SOLUTION
THO-DIMENSIONAL RECTANGULAR COORDINATES
‘UCI.J) 7 VELOCITY IN THE X-DIRECTION
‘VUCI,J)* VELOCITY IN THE Y-DIRECTION
‘ECONC(I.,J)’ DIMENSIONLESS CONCENTRATION
VELOCITY COMPONENTS U, V FROM FLOW EXECUTION
DATA FILE FORO3.DAT
T2 EXECUTION REQGUIRES THE FOLLOWING SUBROUTINES:
IMPXT.FOR
TRIDX.FOR
IMPYT.FOR
TRIDYT.FOR

‘M’ IS THE X-DIRECTION INDEX
‘N’ IS THE Y-DIRECTION INDEX

PARAMETER M=20
PARAMETER N=20

‘K’ IS THE GREATER OF ‘M’ AND ‘N’

PARAMETER K=20
PARAMETER LC=15

‘LC’ IS THE NUMBER OF CONTOURS SPECIFIED

DIMENSION NCONT(LC)

DIMENSION U(M,N),VU(M.N), ECONC(M.N),POLD(M,N},PS(M.,N}.
tP(M,N)Y,A(K),C(K).,D(K),B(K) . QS(K),BETA(K) ,GAMMA(K)

DOUBLE PRECISION U,V,.ECONC,POLD.PS,P.A:C+D.Q/GS,.BETA,GAMMA
COMMON /BLK/ 8,MMi.,NM1,C1,C2,C3

DATA NCONT/30,40.50,70.,80,120,140,160,180,200,210,
1230,250.270,300/

LL = 21

‘XLE IS THE LEWIS NUMBER
‘EPS’ IS THE POROSITY

‘DT’ 1S THE TIME INCREMENT

‘NTRACE’ SPECIFIES THE DURATION OF THE INPUT
PULSE IN TIME INCREMENTS

XLE-=-40-0-
EPS = 0.35
DT = 0.0001
NTRACE = 1

NT = NTRACE+1

‘MAXSTP’ I8 THE MAXIMUM NUMBER OF TIME STEPS

WRITE(4.,100)
FORMAT(SX, ‘ENTER MAXSTP‘,/)

READ(4,110)MAXSTP
FORMAT(I)

173
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c ‘H’ 168 THE SPACE INCREMENT

MM=M
NN=N
WRITE(4,120)MM.NN
120 FORMAT(5X., ‘M, THE X~-DIRECTION INDEX =',13,5X,

1’N:, THE Y-DIRECTION INDEX =‘,13/)
WRITE(4,130)DT
130 FORMAT(SX, 'DT=',E13.6/)
MMi=M-1
MM2=M-2
NM1=N-1
NM2=N-2
H=1,/(20.-1.)
RATIO=MM1 /NM1

C ‘CL‘, ‘C2°, ‘C3’, AND ‘B’ ARE CONSTANTS

Ct = 1./(XLE#H®H)
C2 = 2.%H

C3 = Z2.%EPS/DT

B = C3+2.#C1

C READ VELOCITY COMPONENTS U, V¥V FROM DATA FILE
c GENERATED BY FLOW EXECUTION
DO 10 J=1.N
READ(3,140)(U(I,J) I=1,M)
10 CONTINUE

DO 12 J=1.N ,
READ(3,140)(V(1,J),1=1,M)

12 CONTINUE

140 FORMAT(2X,S5E19.12)
READ(3,150)RA,REPR,MM.NN.FT,.NDATE

150 FORMAT(2X.2E18.12,213,E18.12.,186)

) WRITE(4,160)RAREPR-MM/,NN,FT.NDATE

160 FORMAT (SX, "FROM FLOW EXECUTION :',/9X. 'RA=',E/SX, ‘REPR="‘,E/9X,
1 ‘M=, 1/9%, ‘N=‘,1/9%, ‘TIME=',E/SX.'DATE '-.1/)

c ‘DTAU’ THE INCREMENT FOR DIMENSIONLESS RESIDENCE TIME

T = 0.0
DTAU = (DT*REPR/EPS)*#((19.0/(N-1.0))%22.0)

c ‘EINIT‘ THE INITIAL DIMENSIONLESS CONCENTRATION
EINIT = (EPS/(REPR#DT#NTRACE))I®#(((N-1.,0)/19.0)%%2,0)
WRITE(4,.900)EINIT

900 FORMAT(SX., * EINIT=',E/)

DO 14 I=1.M
ECONC(I.N) = EINIT
14 CONTINUE )

‘NSTEP‘ IS THE STEP NUMBER
TERMINATE COMPUTATION IF NSTEP EXCEEDS MAXSTP
INCREMENT TIME 8TEP BY ONE

nooo
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20

o0

24

NSTEP = NSTEP+1 )
IF(NSTEP.GT.MAXSTP) GO TO 3
T = T+DTAU

IF(NSTEP .NE. NT) GO TO 22

DO 20 I=1.M
ECONC(I,N) = 0.0
CONTINUE

DO 24 I=1.M
DO 24 J=1.N
POLD(I.J) = ECONC(I.J)
CONTINUE

DETERMINE CONCENTRATION FIELD AT THE NEW TIME STEP WITH
SUBROUTINES IMPX. IMPY. TRIDX, AND TRIDY

CALL iHPX(POLD.PS.U:U-H-N.A-C:DvGS.BETA-GAHHA)

CALL IMPY(PS.ECONC,U,V,M.N,A,C.D.G,-NM2,BETA,GAMMA)

c DETERMINE AREA UNDER THE RTD CURVE

30

c CREATE FOR12.DAT FOR AVERAGE EXIT CONCENTRATION,

300

310

NETOT = NETOT+1!
IF(NETOT .EG. 1) GO TO 30
GO 70 1

NETOT = O
ETOT = O.
DO 32 I=1.M
EYOT = ETOT+ECONC(I.1)
CONTINUGE
EAUG = ETOT/M
AREA = AREA+(DTAU*EAVG)

WRITE(12,300)T.,EAVG
FORMAT(2X,2E19.12)

NPLOT = NPLOT + 1
IF(NPLOT .NE. 10) GO TO ¢
NPLOT = O
WRITE(4,310)NSTEP.,T,EAVG

FORMAT(2X, ‘NSTEP=,]5.2X, ‘'TIME=',E13.6.2X, 'EAVG="',E13.6)

TIME

c CREATE DATA FILES FOR TRACER CONCENTRATION CONTOUR
C ~PLOTS '

44

46
420

42

DO 44 L=1.LC

IF (NSTEP .EQ. NCONT(L)) GO TO 46

CONTINUE

GO T0 2

WRITE(4.,420)
FORMAT (10X, ‘CONTOUR‘, /)

LL = LL+1
DO 42 J=i.,N
JJ = N+1-J

WRITE(LL .430)(ECONC(I,JJ),I=1,M)

CONTINUE
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430

440

700

710

800

810

FORMAT(1X,3F12.8}
WRITE(LL,160)RA.REPR.MM,NN,FT ,NDATE
WRITE(LL.440)T

FORMAT(SX, ‘FLON TIME FOR TRACER EXECUTION=‘,E)
GO TO 2 '

OPTIONAL EXIT

WRITE(4,700)

FORMAT (10X, 'TYPE 2 TO ESCAPE PROGRAM EXECUTION'./}
READ(4.,710)NEXIT

FORMAT (1)

IF(NEXIT .EQ. 2) GO TO 3

GO TO ¢

WRITE(12,800)

FORMAT (35X, ‘T,EAVUG DATA')

HRITE(!2-ISO)RA'REPR'HH.NN.FT.NDATE

AREA = AREA-(DTAUSEAVG/2.0)
WRITE(4.,810)AREA

FQRHAT(ZX:’AREA UNDER CURVE= ‘,E)
END

176
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BUBROUTINE IMPX(POLD,PS,U,V,M,N,A,C,D,@S,BETA.GAMMA)
Co—mmme e , - [ —
Cc PROGRAM IMPXT.FOR

Cc X-IMPLICIT HALF OF ADI SOLUTION. DETERMINES CONCENTRATIONS

c

c

‘PE(I,J)’ AT TIME ‘T+(1/2)DT’ BY SOLVING FOR YHE ‘ACI)’,
‘B’, ‘C{I)‘y AND ‘D(I)‘ COEFFICIENTS OF A TRIDIAGONAL MATRIX

DIMENSION POLD(M.N).PS(M,N).GS(M) UM, N) . V(M.N),A(M),
1IC(M).D(M)

DIMENSION BETA(M).GAMMA(M)

DOUBLE PRECISION POLD.PS.GS.A.C.D.BETA,GAMMA

DOUBLE PRECISION U.V

COMMON /BLK/ B.MM1.NM1.C1.C2.C3

C SET NEW CONCENTRATIONS AT THE ENTRANCE. ‘PS(I.N)‘

DO 01 I=1.,M
PS(I,N)=POLD(I/,N)
o1 CONTINUE

C FOR EACH ‘J’, DETERMINE THE NEW CONCENTRATIONS ‘PS(I.J)’
c FOR I=1 THROUGH I=M N

DO 11 J=2.,NMi
c DETERMINE COEFFICIENTS OF NEIGHBORING POINTS

DO 21 I=2.,MM1
A(I)=-U(I-1,J)/C2-C1
21 C(I)=U(I+1,J)/C2-Ct

C DETERMINE VALUE OF KNOWN QUANTITY ‘D(I)’

DG 31 I=§{.,M
D(I)=C3#POLD(I,J)+{(-VU(I,J+1)»POLD(I,J+1)+V(I,J-1)+
1 POLD(I.,J-1))/C2+4C1#(POLD(]I,J+1)-2.#POLD(I,J)+
1 POLD(I,J-1))
31 CONTINUE

Cc CALL SUBROUTINE TRIDX TO SOLVE TRIDIAGONAL MATRIX
CALL TRIDX(G@S5,A.C.D,M.BETA,GAMMA)

c ASSIGN VALUES OF SINGLE-INDEX ARRAY TO TWO-DIMENSIONAL
c ARRAY

DO 41 1=2,MM1
PS(1.,J)=Q6(1)
41 CONTINUE

c SET NEW CONCENTRATIONS AT THE WALLS. ‘PS(1.,J)°
c AND ‘PS(M.J) "’

PS(1,4)=PS(2,J)
PB(M,J)=PS(MML1.,J)
11 CONTINUE
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c SET NEW CONCENTRATIONS AT THE EXIT. ‘PS(1.J)°

DO S1 I=1.M
PS(I,1) = PS(I1.2)
S1 CONTINUE

RETURN
END

SUBROUTINE TRIDX(G.A.C,D.M,BETA,.GAMMA)
[ e it e St ek
(o} PROGRAM TRIDX.FOR
Cc SOLUTION OF A TRIDIAGONAL MATRIX IN ‘Q(M)’, GIVEN ‘A(M)’,
Cc ‘B'y ‘C(M)’s AND ‘D(M)’
C

DIMENSION G(M),A(M),C(M),.D(M).BETA(M) . .GAMMA(M)
DOUBLE PRECISION G:,A.C.D.BETA,.GAMMA
COMMON /BLK/ B.MM1,NM1,C1.,C2.C3

C DETERMINE RECURSION CONSTANTS ‘BETA’ AND ‘GAMMA’

BETA(2) = B+A(2)
GAMMA(2Z2) = D(2)/BETA(Z)

DO 10 K=3,M-2
BETA(K) = B-(A(K)#C(K-1)/BETA(K=-1))
GAMMA(K) = (D(K)-A(K)*GAMMA(K-1))/BETA(K)
10 CONTINUE
BETA(MMI) = B+C(MMI)-(A(MMI)*C(M-2)/BETA(M-2))
GAMMA(MM1) = (D(MMI1)-A(MMI1)*GAMMAR(M-2))/BETA(MMI1)

c DETERMINE ‘G(K) '

G(MM1) = GAMMA(MMI1)
DO 20 KK=2,M-2
K = M-KK
R(K) = GAMMA(K)-C(K)#Q(K+1)/BETA(K)
20 CONTINUE

RETURN
END
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02

22

32
12

42

SBUBROUTINE IMPY(PS8.P.U.V,M,N,A.,C,D,Q,NM2,BETA.GAMMA)

PROGRAM IMPYT.FOR

Y-IMPLICIT HALF OF ADI SOLUTION., DETERMINES CONCENTRATIONS
‘P{1,J)’ AT NEW TIME STEP BY SOLVING FOR THE ‘A(I)‘, ‘B’.
‘C{I)’+ AND “D(I)’ COEFFICIENTS OF A TRIDIAGONAL MATRIX

———————— = W W = - G S A - - — - - -

DIMENSION PS(M.N).P(M.,N).Q(N) ,U(M,N}  V(M,N),A(N).,C(N),D(N)
DIMENSION BETA(N) ,.GAMMA(N)

DOUBLE PRECISION PS.,P.G,A,C,D,BETA,GAMMA

DOUBLE PRECISION U,V

COMMON /BLK/ B.,MMi,NM1.C1.,C2.C3

SET NEW CONCENTRATIONS AT THE ENTRANCE. ‘P(I.N)’
DO 02 I=1.,M
P(I.N)=PS(I.N)
CONTINUE

FOR EACH ‘I‘, DETERMINE THE NEW CONCENTRATIONS ‘P(I,J)°
FOR I=1 THROUGH I=M

DO 12 I=2,MM1
DETERMINE COEFFICIENTS OF NEIGHBORING POINTS |
DO 22 J=2,NMI
A(J)=-U(I.,Jd-1)/C2~-C1
C(J)=VU(I,J+1)/C2-C1

DETERMINE VALUE OF KNOWN QUANTITY ‘D(J)”’

D(J)=C3#PS(I J)+(~U(I+1,J)%PS(I+1.J)+U(I-1,J)%PS(I-1,J)
1 Y/C2+C1#(PES(I+1,J)-2.#PS(1,J)+PS(I-1.,4))
CONTINUE

D(NM1)>=D(NMI1)-C(NM1)#PS(I.N)

* CALL SUBROUTINE TRIDY TO SOLVE TRIDIAGAONAL MATRIX

CALL TRIDY(G,A,.C.D,N,BETA,GAMMA)

ASSIGN VALUES OF SINGLE-INDEX ARRAY TO TWO-DIMENSIONAL
ARRAY

DO 32 J=2.NMi
P(I.,Jd)=Q(J)
CONTINUE
CONTINUE

SET NEW CONCENTRATIONS AT THE WALLS. 'P({.J)'
AND ‘P(M.J) "’

DO 42 J=2.NM1
P(1,4)=P(2,J)
P(M,J)sP(MML.,J)

CONT INUE
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c

s52
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c

20

5 180

SET NEW CONCENTRATIONS AT THE EXIT, ‘P(I,1)’

DO 52 I=1.,M
P(I,1) = P(1.2)
CONTINUE

RETURN
END

BUBROUTINE TRIDY(Q.A.C.D.N,BETA,GAMMA)

PROGRAM TRIDYT.FOR
SOLUTION OF A TRIDIAGONAL MATRIX IN ‘G(N)‘, GIVEN 'A(N)’,
‘B, ‘C(N}’, AND ‘D(N)’

DIMENSION G(MILA(NILC(N)-D(NI,BETA(N) .GAMMA(N).
DOUBLE PRECISION G.A.C.D.BETA.GAMMA
COMMON /BLK/ B.MM1,NM1,.C1.C2,C3

DETERMINE RECURSION CONSTANTS ‘BETA’ AND ‘GAMMA’

BETA(2) = B+A(2)
GAMMA(2) = D(2)/BETA(2)

DO 10 K=3,NM1
BETA(K) = B-(A(K)#C(K-1)/BETA(K-1))
GAMMA(K} = (D(K)-A(K)*GAMMA(K-1))/BETA(K)

CONTINUE
DETERMINE ‘G(K)"*

G(NM1) = GAMMA(NM1)
DO 20 KK=2,N-2
K = N-KK .
Q(K) = GAMMA(K)-C(K)#Q(K+1)/BETA(K)
CONTINUE

RETURN
END



