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ABSTRACT

This thesis presents a numerical study of the Residence 
Time Distributions (RTDs) resulting from a pulse input to a 
packed bed reactor where the flow is dominated by free 
convection. A two-dimensional solution is obtained for 
porous media confined between vertical side walls and heated 
from below. Net vertical flow is imposed.

The approach was to solve the governing time-dependent 
partial differential equations for flow to produce velocity 
profiles at steady state. Using the steady state profiles a 
second time dependent calculation was performed to obtain 
tracer responses to a pulse input. Resulting RTDs for the 
onset of free convection were correlated with flow patterns, 
the Rayleigh number (Ra) - a measure of stability, and a 
parameter R e P r , the product of a Reynolds number and a 
Prandtl number - characteristic of through-flow strength. 
The achievement of steady state was clearly indicated by 
plots of the natural logarithm of the root mean square 
average vorticity against t i m e . The RTDs for steady 
convecting flow were intermediate to the perfectly mixed 
vessel and plug flow models and characterized by multiple 
p e a k s . The p e a k s  w e r e  d e t e r m i n e d  to r e s u l t  f r o m 
recirculation of tracer in the rotating convection cells.
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The pulse response was a function of R a , R e P r , and 
vessel height. It was i n d e p e n d e n t  of the number of 
convecting cells, and the vessel width. A mixing time 
characteristic of the RTD increased with increasing RePr and 
decreased with increasing Ra and height.

In summation, RTD methods are decisive in detecting 
free convection and capable of qualitatively characterizing 
the flow.
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1. INTRODUCTION

1.1 Objective
The study of free convection in porous media has 

applications in many areas of chemical engineering. In 
geothermal reservoirs and pebble bed nuclear reactors free 
convection is the driving force behind the essential 
transport of heat. Conversely, the presence of free 
convection in oil shale retorts and coal and biomass 
gasifiers could reduce the overall conversion rate. Insight 
on the flow processes occurring in porous media can be 
readily obtained by the numerical solution of partial 
differential equations. This was the general intent of this 
thesis. In addition, it was desired to choose a numerical 
approach that could be applied at some future date to 
extensive experimental work.

Past experimental studies have been largely limited to 
measurement of the rate of heat transfer or they rely on 
temperature probes situated in the flow field - which 
necessarily cause local disturbances - for information on 
the internal state of the medium. Such heat transfer 
methods are slow, imprecise, and generally difficult. It is 
proposed that measurement of the Residence Time Distribution 
(RTD) can be used as a n o n - intrusive means of obtaining
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information on the internal flow field, and in particular, 
that it can be applied to detecting free convection. This 
method has been widely used in mixing studies. Papers of 
note are as follows. H o l m e s , Voncken and Decker [1] 
quantified mixing times in turbine-stirred baffled vessels 
by measuring the circulation time for a pulse of tracer. 
Khang and Levenspiel [2] used RTD methods to characterize 
batch mixing with a decay rate constant. This constant was 
then used to define a mixing-rate number. Results similar to 
Khang and Levenspiel were obtained by Sasakura et al.. [3],

Measurement of the RTD has not been widely used in the 
study of free convection. Its application to packed bed 
reactor flows requires the existence of a net through-f low 
stream. Such a stream may be a pre-existing condition - as 
with oil shale retorts - or it may be induced by the 
introduction of a small amount of through-flow.

The specific intent of this thesis was to conduct a 
numerical study to correlate the onset of free convection in 
porous media with flow patterns, numerical parameters 
characterizing stability and through-flow strength, and the 
impulse response to a hypothetical tracer input.

1.2 Approach
Free convection is produced when a density gradient
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results in buoyant instability. Refer to Chandrasekhar [4] 
for a thorough discussion of this subject. The density 
gradient may be induced by a concentration gradient or a 
thermal gradient. Only thermal gradients were considered 
here. The model used consisted of a bed of porous media 
heated from below in a gravitational field. Walls were 
assumed adiabatic. Presupposing the possible existence of 
asymmetrical flow patterns, symmetry about the center 1 i ne 
was not used. Both no-flow and net vertical flow cases were 
studied. The region investigated was restricted to flows 
sufficiently small that forced convection could not mask the 
effects of free convection. The cases of interest were 
above the critical point for the onset of convection.

The approach was to solve the governing time-dependent 
diffe r e n t i a l  equations for two-dimensional flow under 
conditions of free convection to produce a velocity profile 
at steady state. Using the steady state profile a second 
time-dependent calculation was performed for the solution of 
a species equation for t r a c e r , which gave the tracer 
response to a pulse input. The governing equations for the 
flow were solved with Successive Overrelaxation (SOR) and 
Alternating Direction Implicit (ADI) methods. The tracer 
response c a l c ulation used an explicit form of upwind 
d iff e r e n c i n g  after the ADI m e t h o d  w a s  f o u n d  to be
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inadequate. RTDs were generated by graphing the change in 
exit age distribution against time. As this RTD has no 
physical meaning for no-flow cases, RTDs were generated for 
net through-flow cases only.

Refer to Carnahan, Luther and Wilkes [5] and Smith [6] 
for a general discussion of finite difference methods. 
Specific application to computational fluid mechanics is
covered in Roache [7] and in Chow [8 1 Relevant papers
include Wilkes and Churchill [9] and Samuels and Churchill 
[10 ] who applied ADI techniques to free convection.

1.3 Previous Work: Convecting Flow
The onset of free convection in an initially stagnant 

l a y e r  of fluid by heating the fluid from below in a 
gravitational field was first observed by Benard in 1900. 
In 1916 Lord Rayleigh made the first theoretical analysis. 
He identified a non-dimensional parameter, the Rayleigh 
number (Ra), characteristic of stability/instability. It is 
defined in the literature as the ratio of buoyant to viscous 
forces. Pellew and Southwell [ 11] extended the theory of 
convective currents to explain cell patterns. Lapwood [12] 
made a theoretical analysis applying criteria for the onset 
of convection to porous media. Katto and Masuoka [13] 
refined the theory for porous media, defining an effective
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t h e r m a l  d i f f u s i v i t y  that i n c o r p o r a t e d  the thermal 
conductivity of the bed and the specific heat and density of 
the fluid.

Of particular interest here is the work of Homsy and
Sherwood [14 ] on the effect of net vertical flow of fluids

>
in porous m e d i a . They used linear theory to establish an 
upper bound on the critical Rayleigh number above which free 
convection must exist. The critical Rayleigh number in 
their work is a function of a dimensionless through-flow 
strength quantified by the product of the Reynolds number 
and an adjusted Prandtl number, RePr. The Prandtl number 
used is based on a thermal diffusivity adjusted for the 
thermal conductivity of the bed. The lower limit on the 
critical Rayleigh number, below which stability is assured, 
is given by energy theory. Figure 1.1 presents these 
theoretical results and illustrates that the critical 
Rayleigh number increases with increasing RePr.

1.4 Previous Work: Residence Time Distribution

1.4.1 Theory
Tracer response theory comm o n l y  uses an impulse 

function for the tracer input. Theoretical results are well 
known for two limiting cases: plug flow, and the perfectly
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Figure 1.1 
Stability Limits as a Function of RePr
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mixed vessel . There are many forms, other than these two, 
that the RTD can take depending on the degree of mixing.

For plug flow, the one-dimensional species equation for 
tracer concentration, CA is

= ^ y ^  - 4 y ^  (1.4-1)
with boundary conditions

CA = A • <S(t) at the entrance (1.4-2)

14^- = o  at the exitd y

Where A is the area under the concentration - time curve, t 
is time, D is the mass dispersion coefficient, y is the 
length, and v is velocity. Following the solution presented 
by Friedley [15] , the impulse response, G(y,t) , as the 
overall bed length approaches infinity is given by

G(y't) = 2 % ( t T D ) /eXP" TtD (t_V ) (1.4-3)
This function is plotted in Fig. 1.2. If measured at the 
outlet the impulse response is the RTD.

The impulse response of a perfectly mixed vessel is 
given by

Ca = Ay exp- (tÿ) (1.4-4)
where the term (v/y) is the inverse of the residence time.
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Response to an Impulse Function
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1.4.2 Experimental
E x p e r i m e n t a l  m e a s urement of the RTD was used by 

F e u e r h e r m  [16] to detect free convection. He used a 
cylindrical vessel of porous media heated from below with a 
net vertical downward flow. The saturating fluid was carbon 
dioxide. Helium was used as the tracer gas since it can 
readily be detected in carbon dioxide using the thermal 
conductivity difference. Graphs of the RTD based on average 
exit age are presented in Figures 1.3 and 1.4 for plug flow 
and free convection. The average concentration at the exit 
was determined from the cup mixing average of five points, 
each at different radii. Since the tracer was distributed 
across the bed at the inlet these results should approximate 
the one-dimensional plug flow results of Freidley.

Feuer herm's work was preliminary. He was not able to 
verify the cause of multiple peaks or to correlate the 
resulting RTDs with flow patterns or numerical parameters.
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2. THE GOVERNING EQUATIONS

2.1 Flow Calculations

2.1.1 Governing System of Equations
Following common practice for studies of convective 

instability the physical properties of the system, excepting 
the density, are assumed constant. Applying the Boussinesq 
a p p r o x i m a t i o n  [4,8], t hat for s m a l l  v a r i a t i o n s  in 
temperature density can be considered constant everywhere 
except in the buoyant force term, the governing system of 
equations for the flow calculations is:
Equation of State

p = Po 1-6(T-T0 ) (2.1-1)
Continuity Equation

V •v = 0 (2.1-2)
Darcy1s Law

0 = -VP - ^  - pgj (2.1-3)

Thermal Energy Equation

#  + [V'VT] = f e ) b V2T (2.1-4)
where 6 is the coefficient of volume expansion, T is the 
temperature, p is the density with subscript 10 1 denoting 
the d e n s i t y  at temperature To , v is the superficial

A R T H U R  LAKES LIBRARY 
C O L O R A D O  S C H O O L  of MINES 
G O L DEN, C O L O R A D O  80401
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velocity, P is the pressure, is the kinematic viscosity, K 
is the bed permeability, g is gravity, j is a unit vector in 
the vertical dimension, t is the time, Cp is the specific 
heat, and k is the thermal conductivity. Subscripts 1f * and 
1b 1 indicate fluid and bed properties, respectively.

The problem was attacked using a vorticity-str earn 
function approach [7,8]. Vorticity is defined as

where x denotes the horizontal dimension, y the vertical 
dimension. Taking the curl of Darcy's Law and applying the 
a b o v e  d e f i n i t i o n s ,  t h e  s y s t e m  of e q u a t i o n s  in 
two-dimensional rectanglular coordinates reduces to:
Stream Function Equation

(2.1-5)
The stream function is given by

9̂;
9x (2.1-6)

(2.1-7)
Vorticity Transport Equation

t BqK 3T
v ax (2.1-8)

Thermal Energy Equation
( pCp  ) f
( pCp )b (2.1-9)
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These equations are now applied to a porous medium confined 
between vertical side walls and heated from below. Net 
vertical flow is imposed. See Figure 2.1

2.1.2 Initial Conditions
An initial velocity field is assumed such that there is 

no horizontal component of velocity and the vertical 
component is constant

vx = 0 , vy = v 0 (2.1-10)
This velocity field requires an initial stream function 
profile that is linear with respect to x and constant with 
respect to y

* = -Vo* + p w i d t h  (2.1-11)
The initial temperature profile is based on a system at 

steady state in the absence of free convection : Temperature
is constant with respect to x and varies with respect to y 
as a function of the superficial velocity.

T = f(y,v0 ) (2.1-12)
Since the horizontal temperature gradient is zero and 
vorticity is proportional to this gradient, the initial 
vorticity must also be zero.

1 = 0  (2.1-13)
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Figure 2.1 
Two-Dimensional Model
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2.1.3 Boundary Conditions
Boundary conditions for the system are developed in 

full at this p o i n t . D e t e r m i n a t i o n  of which ones are 
mathematically required was made after development of the 
finite difference equations. The temperature and vorticity 
boundary conditions will be d e al t  w i t h  first. The 
temperatures at the top (entrance) and bottom (exit) are 
held at their initial values. This requires vorticity to 
retain its initial value of zero at the top and bottom. 
Adiabatic walls are assumed. The requirement for no heat 
flux through the walls may be wri tten in terms of the 
horizontal temperature gradient.

_9T
9x = 0wa 11 ( 2 . 1 —1 4 )

Again, in the absence of a horizontal temperature gradient
vorticity is zero

° <2 -1-15)
Velocity at the top and bottom is held at the initial

condition. At the walls the x-component of velocity must
vanish

, = 0 ( 2 . 1 - 1 6 )w a l  1
additionally,

3Vj
3y w a l l = 0 ( 2 . 1 - 1 7 )
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Since

wall = 0 (2.1-15)
has been established, and from equation (2.1-5)

= iXz 3vx
wall 3 x wall 9Y wall (2.1

ax = o (2.1-19)wall

must also be true.
Since velocity at the entrance and exit is held 

constant, the stream function at these points retains its 
initial values. Along the walls equation (2.1-16) may be 
rewritten as

vx =
wall 9 Y

= 0wall (2 . 1 - 2 0 )

defining a streamline. The initial condition is used in 
order to be compatible with inlet and exit stream functions.

2.1.4 Dimensionless Form of the Equations
For the normalizing system to be most effective it must 

be based on a time interval characteristic of the process. 
For this flow problem the controlling parameter is the 
effective thermal diffusivity,

(2.1-21)
and the appropriate time constant was based on thermal
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diffusion

T - t a "ÎP" (2.1-22)
where H is a reference length. With the addition of a 
reference temperature difference (Ti-T0) where T% and T 0 are 
the temperatures of the bottom and t o p , respectively, a 
system of dimensionless variables is defined:
Length

v — y  — yH ' H (2.1-23)
Velocity

u = Vicf, , v = Vyl^ (2.1-24)

Stream function 

Y = -XrcT (2.1-25)
Vorticity

=  r H 2w  ̂ cT (2.1-26)
Temperature difference

6 = (t i -T0) (2.1-27)
the resulting dimensionless system of equations is:
Stream Function Equation

r g 2 8 2 "1
“ = [aY7 + '3X7 J (2.1-28)
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_ÈÊ_ = _Y3t

Vorticity Transport Equation

w 3X (2.1-29)
Thermal Energy Equation

"8(U6) + 3(V9) *[ + ( V .  + lL.1 e3 Y J 0 (2.1-30)
where the stream function in dimensionless terms is defined 
by

U = !y  ' V = - -B (2.1-31)
and the dimensionless constants are the Rayleigh number

Ra _ gqH(Ti-T0 ) KKa “ a"v (2.1-32)
and the ratio of specific heats 

= (pCp )f
Y (pCp)b (2.1-33)

The thermal energy equation is presented in conservative 
form by use of the equation of continuity.

The initial conditions in dimensionless form are as 
follows:
Velocity

U = 0 , V = V0 (2.1-34)
Stream Function

, . -v,,» . f-
Temperature

e = f(y,VQ ) (2.1-36)
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additionally,
0

t o p
= 0 , 0 = 1

b o t t o m
( 2 . 1 - 3 7 )

Vorticity
2 = o

The boundary conditions are: 
Veloci ty
At the side walls,

( 2 . 1 - 3 8 )

U
w a l l

= 0 , 9V
ax = o

w a l 1 ( 2 . 1  39 )

Components of velocity retain their initial values at the 
entrance and exit.
Stream Function
The s t re a m function retains its intial value at the 
entrance, exit, and walls.
Temperature 
At the side walls,

909X
= 0

w a l l  ( 2 . 1 - 4 0 )

Temperature is held constant at its initial value at top and 
bottom.
Vorticity
Vorticity retains its initial value at the entrance, exit, 
and side walls.
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2.2 Tracer Calculations

2.2.1 Governing Equation, Initial and Boundary Conditions
The species equation for tracer response is given by

eff>- + (v.vca) = DV2Ca (2 .2 -1 )

where e is the bed porosity, C& is the concentration of 
t r a c e r , and D is the d i s p e r s i o n  c o e f f i c i e n t .  In 
two-dimensional rectangular coordinates the conservative 
form of the equation is

3(CAyy ) 1 _ ,J #CA ^ #Ca ‘ (2.2-2)
Tracer is introduced at the top as a rectangular pulse 

with concentration Cinitial- The duration of the pulse is 
small in compar ision with the residence time of the vessel 
in order to approximate a delta function. The boundary 
condition at the side walls is derived from the physical 
constraint of no mass flux through the walls 

CA

c .9Ca + 9(Ca Vx ) , 9(Ca W  ) —  Q ' #Ca + #Ca 'C 3t + 3x + ay J 3 x2 3 y\

= 0wall (2.2-3)
The exit concentration, following Danckwerts* [17] analysis, 
will be specified by

Ç aI
exit = 0 (2.2-4)
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2.2.2 Dimensionless Form of the Equation
The normalizing system developed for the flow problem 

is carried over to the tracer equation with the addition of 
a dimesionless concentration E ,

E = CAo (2.2-5)
where Ca o is a reference concentration. The resulting 
dimensionless equation is

e9E = _ 3 (UE) _ 3 (VE) + 3 2 . 3 2 ]e+ i - L l L  + J±.}3t 3X 3 Y Le|_3X^ (2.2-6)
where the Lewis number is not the standard ratio of thermal 
to mass diffusivity but is defined as the ratio of the 
effective thermal diffusivi ty to the mass dispers ion  
coefficient.

Le = ÏT (2.2-7)
Co nc ent rat ion  of tracer in the impulse is given by 

^initial-Boundary conditions at the side walls and exit are
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3. NUMERICAL SOLUTION

3.1 Introduction
The system of partial differential equations, initial 

and boundary conditions governing the flow and tracer 
response calculations has been established. The problem at 
hand is to obtain finite difference approximations to the 
partial differential equations.

In general, central differences were used for spatial 
derivatives, and forward differences for time derivatives. 
The stream function, thermal energy and species equations 
require additional consideration.

The stream function equation
->0) ^ (2.1-28)

is Poisson* s equation, a special case of the more general 
elliptic equation. Following common practice it was solved 
by Successive Overrelaxation (SOR).

The thermal energy equation
90
Y9T L 9X 9Y J L 9 X 2 9Y2 J v (2.1-30)

and the species equation for tracer

(2.2-6)
are mixed parabolic-hyperbolic equations. They have been
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formulated as conservative equations (the first derivative 
is taken on the product of velocity and temperature/concen
tration) to ensure conservation of thermal energy/tracer in 
the finite difference calculations [7]. The thermal energy 
equation requires current values of both velocity and 
temperature ; it is non-linear. The species equation for 
tracer , because it uses velocities at steady state, is 
linear.

There are many approaches to the numerical solution of 
these mixed parabolic-hyperbolic equations. Two finite 
dif fer enc e methods were considered here ; Alternating 
Direction Implicit (ADI) and upwind-differencing.

I m p l i c t  m e t h o d s  h a v e  th e  a d v a n t a g e  of being  
unconditionally stable when applied to a single equation. 
As a consequence larger time steps can be used than with 
explicit methods. ADI was initially choosen because of the 
success Chur ch ill  [9,10 ] had in applying it to free 
convection. ADI techniques resolve the partial differential 
equation into two finite difference equations: the first
implicit in the x-direction o n l y , the second implicit only 
in the y-direction. These finite difference equations are 
applied successively, the execution of each occurring over 
one-half the time step. The ADI method was successfully 
applied to the thermal energy equation. Application to the
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species equation for tracer, however, resulted in excessive 
and unrealistic overshoot and oscillations. At this point 
it was decided to investigate upwind differencing of the 
v e l o c i t y  c o m p o n e n t s , a technique known to damp such 
oscillations, for the species equation.

The salient feature of upwind differencing is that a 
perturbation is convected only in the direction of fluid 
motion. To its detriment, it works by introducing an 
artificial viscosity analogous to a diffusive viscous force 
whose effect is to introduce artificial damping and 
diffusion in the numerical solution. Upwind differencing 
was tried with both explicit and ADI forms of the finite 
difference e q u a t i o n . Both performed satisfactorily, 
producing nearly identical results and requiring time steps 
of the same order of magnitude. The ADI execution, however, 
required more CPU time as well as additional storage. 
Explicit upwind differencing was used for solution of the 
species equation.

3.2 System of Grid Points
A s y s t e m  of g r i d  p o i n t s  w a s  e s t a b l i s h e d  in 

two-dimensional rectangular coordinates for solution of the 
finite difference equations. Reference Figure 3.1. There 
are "M" grid points in the horizontal direction and "N" grid
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Figure 3.1 
Two-Dimensional System of Grid Points
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points in the vertical direction. Consistent with the 
development of the initial and boundary conditions, symmetry 
about the centerline was not imposed.

Gradients in the vertical and horizontal dimensions 
were expected to be of the same order of m a g n i t u d e ,  
suggesting a common spatial increment with Ax equal to Ay, 
could be used. This expedient results in less complicated 
finite difference equations. The increment was designated 
h . Common practice is to define this increment based on 
height, yielding

h - 1(N-l) (3.2-1)
Because the horizontal to vertical ratio was a variable in 
this paper it was desired to standardize the increment, 
retaining the same step size for all calculations. A value 
of twenty, the minimum number of grid points used in any 
dimension, was chosen so that

h - 1" (20-1) (3.2-2)
Now the number of grid points, rather than the size of the 
spatial increment, is variable. The height-to-width ratio 
is varied by changing the ratio of M to N. The accuracy of 
the execution is increased by increasing M and N proportion
ately, thereby increasing the number of grid points.

For Ax equal to A y the aspect ratio may be defined as
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the ratio of M to N. An aspect ratio of one corresponds to a 
square grid, greater than one indicates an increase in width 
r e l a t i v e  to h e i g h t ,  and less tha n one signifies a 
two-dimensional vessel taller than it is wide.

Subscripts for the horizontal and vertical directions 
are "i" and "j", respectively. A superscript "n" , is used 
for the time step. A t ,  when required.

3.3 Finite Difference Form of the Governing Equations

3.3.1 Stream Function Equation
Solution of the stream function equation by SOR takes 

the finite difference form [6,7,8]:

= 'C d1 + (2EP 1)[Cij (3.3-1)

- 4\ j 1+ h24 j ]

where OPTOM, the relaxation factor is equal to [7]
O P T O M  =  8  -  4 / 4  -  ( c o s t t / M  -  c o s t t / H )

( c o s t t / M  -  c o s t t / N )  ( 3 . 3 - 2 )

Previous values of the stream function, and current values
of the vorticity are required. The solution is iterative at
the time step with convergence to a maximum allowable error.
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3.3.2 Vorticity Transport Equation
Vorticity is directly proportional to the horizontal 

temperature gradient. The central difference form is:

Current values of the temperature are used to generate the 
current vorticity values.

3.3.3 Thermal Energy Equation
Temperatures at the new time step are generated by 

solving the thermal energy equaiton using an ADI technique 
[5,6]. The general x-implicit equation is

(3.3-3)

(3.3-4)

2h h?

Similarly, the general y-implicit equation is
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where superscript " denotes a time half step, n+1/2.
As i l l u s t r a t e d  in the a b o v e  f i nit e difference 

equations, the non-linear term was handled by using values 
of velocity from the current time step rather than from the 
new time step. (New velocity values do not exist at this 
point. They could be estimated by linear extrapolation or 
determined by iteration at the time s t e p . Neither approach 
was believed necessary. ) Values of the temperature at the 
current time step are also required.

3.3.4 Velocity Equations
Velocity is obtained from the stream function by 

applying central di ffe ren cin g to the stream function 
definition. The resulting equations are

Current values of the stream function are required, yielding 
current values of the velocity components.

3.3.5 Species Equation for Tracer
The Species equation for tracer was solved for new 

values of the tracer concentration using explicit upwind

(3.3-6)
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d i f f e r e n c i n g  [7,8]. The s e l e c t i o n  of the u p w i n d  
diff er enc ing  technique was made to introduce a damping 
factor that would eliminate oscillations and negative 
concentrations generated with the implicit method.

Using the steady state velocity field the upwind 
differencing velocities are defined as follows:

the explicit form of the species equation for tracer becomes

C u r r e n t  v a l u e s  of tracer co nce ntr at ion  are used in 
conjunction with the upwind differencing velocities to 
generate the new tracer concentration values.

UF = ( U ^ j  + U^j)/2 
UB = + U ^ ) / 2
VF = (V^j+1 - Vifj)/2 
VB = + Vj#j)/2

(3.3-7)

E^j1 = E^j - PI - P2 + (AT/eLeh2) |E"+Lj+ E ^ j  (3.3-8)

where the parameters PI and P2 are given by
PI = (AT/2 eh) (ÜF-|UF| )Ei+1<j+ (UF+1 UF |

—UB+ | UB | ) E^ j - (OB+|OB| )£^_1<j
(3.3-9)

P2 = (AT/2eh) (VF-|V F |)E^j+1+ (VF+|VF| 
-VB+|VB|)E?j -(VB+|VB|)E^j_i

(3.3-10)
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3.4 Finite Difference form of the Initial Conditions

3.4.1 Velocity
The initial conditions for velocity are given by

for all i , j (3.4-1)
for all i , j

V0 f t h e  i n i t i a l  v e l o c i t y  is c a l c u l a t e d  f r o m

where RePr is the product of a Reynolds number based on 
actual height and a Prandtl number employing the effective 
thermal diffusivity.

3.4.2 Stream Function
Requirements on the initial stream function profile are 

that it be linear with respect to x , and constant with 
respect to y . Imposing the additional constraint that the 
stream funciton be zero at the center1 ine, the following 
form can be deduced

(3.4-2)

for all i, j (3.4-3)

3.4.3 Temperature
The initial tem perature profile is constant with
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respect to x and varies with respect to y as a function of
V0 • In terms of RePr it may be expressed as

©i,j = 1 - (j-l)[l/ (N-l)] (3.4-4)
for no flow and

e. , = exp[ RePr[ 1- ( j-1) (1/ (N-l) )]] - 1
exp(RePr) - 1 (3.4-5)

for net through-flow. These forms are consistent with the
normalized initial conditions

01,1 = 1 for all i (3.4-6)
Oĵ N = 0 for all i

3.4.4 Vorticity
The initial vorticity is zero.
Q)i,j = 0 for all i , j (3.4-7)

3.4.5 Tracer Concentration
Tracer was introduced with the flow in a narrow 

rectangular p u l s e , approximating the impulse function. 
Reference Figure 3.2.

The initial condition for tracer concentration is
Ei,N = E initial £or 311 i . T<6 (3.4-8)

= 0 for all i , t^S
and

E^j = 0 for all i , j^N
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3.5 Finite Difference form of the Boundary Conditions

3.5.1 Velocity
Components of velocity retain their initial value at the 
entrance and exit

U—  = 0 for all i \ j = l or N (3.5-1)
= VQ for all i , j=l or N

At the side walls the following conditions must be satisfied

U^j = 0 for i=l or M, all j (3.5-2)
9V
9X = 0

1=1 o r M
for all j

The condition on velocity component V at the walls may be 
expressed as a first order boundary condition

Yio = V 2;j for all j (3.5-3)
VHj = for a11 j
First order boundary conditions are used for first 

order derivatives thoughout this paper despite using second 
order finite difference equations for the following reason 
presented by Roache [7]. When using the vorticity stream 
function scheme second order forms can cause instability.
The first order form is the safest to use and often gives
results essentially equal to higher order forms.
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3.5.2 Stream Function
The stream function retains its initial condition at 

all boundaries.

3.5.3 Temperature
As previously stated the boundary conditions at the 

entrance and exit are
= 1 for all i (3.5-4)

0i,N = 0 for all i
At the side walls

- 0 for all j ,0 c cv
i = l  o r  M (3.5-5)

is expressed as the first order boundary condition
O^j = 02fj for all j (3.5-6)
®H j  = for all j

3.5.4 Vorticity
A vorticity boundary c on dit ion  is not ex plicitly 

required for solution of the finite difference form of the 
governing system of equations.

3.5.5 Tracer Concentration
Concentration of tracer at the inlet is specified by
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the concentration and duration of the impulse. The boundary 
condition at the side walls

8E 
3 X i=l or M = ° £° r 311 j 0.5-7)

is expressed as
EJ,j = for all j (3.5-8)

= E m—i,j for all j
The condition at the exit

3E 
3 Y

becomes
j=N - 0 f0r a11 1 (3.5-9)

Ei,N = Ei,N-l for 911 1 (3.5-11)

3.6 Execution

3.6.1 Overview
The execution was carried out in two successive steps : 

solution of the flow equations for the steady state velocity 
field, followed by solution of the species equation for 
tracer. The former provided stream function and temperature 
contours in addition to the velocity field. The later 
result was used to generate the RTD and tracer concentration 
contours.

A criterion was needed to establish when steady state 
had been r e a c h e d . It was believed that a function of
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vorticity could be used : when vorticity ceased to increase
with time the steady state would be attained. Inspection of 
preliminary results suggested using the natural logarithm of 
the root mean square (rms) average vorticity as it varied 
with time.

3.6.2 Flow Calculations
The numerical approach to the flow calculations was as 

follows:
1) Iterative solution of the stream funciton Poisson1s 
equation with SOR.
2) Calculation of the velocity components by central 
difference.
3) So lution of the time-dependent thermal energy 
equation by an ADI technique.
4) Calculation of vorticity by central difference.
5) Repetition of steps (1) through (4) until the
steady state is reached.

Reference figure 3.3 for the flow diagram.
A time step of A t  = 5 and a nominal value for the ratio 

of specific heats, y = 2xl0- 4 , were used in all executions. 
Note that the ratio of specific heats occurrs only in 
conjunction with the time step. Modifying its value has the 
same effect as changing the time step.



IN
IT
IA
LI
ZE

T-3155 39

<—i
f i x

si
tn

M

10
X zcn

CO

O M

_  c K S B m

Fi
gu
re
 

3.
3 

Flo
w 

Di
ag
ra
m 

for
 

Flo
w 

Ca
lc

ul
at

io
ns



T-3155 40

3.6.3 Tracer Concentration Calculation
Solution of the time dependent species equation for 

tracer using the steady state velocities was with an 
explicit upwind differencing technique. Nominal values of 
porosity, the Lewis n u m ber, and pulse duration were 
selected. They were: e = 0.35, Le = 40, Ntrace = 10. The 
time step, for most executions, was A t  = 0.0001. In a 
result similar to that for the flow calculations, porosity 
is always associated with the time step and modifications to 
its value have the effect of modifying the time step.

R e s u l t s  are p r e s e n t e d  in a f or m  s u i t a b l e  for 
comparision with previous work. The RTD used was the 
average dimensionless concentration of tracer at the exit 
versus a d im ens ion les s r e s i d e n c e  time. The average 
concentration at the exit is comparable to the five point 
cup mixing average concentration used by Feuerherm.

T h e  d i m e n s i o n l e s s  r e s i d e n c e  time, t* is the 
dimensionless time, t divided by the residence time for the 
vessel in dimensionless terms, T res

The residence time for the vessel, tres, is the void 
volume divided by the volumetric flow rate, where for a

T* T___
T res (3.6-1)

A R T H U R  LAKES LIBRARY 
C O L O R A D O  S C H O O L  of M I NES 
GOLDEN, C O L O R A D O  80401
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vessel of unit depth the void volume is the product of 
height, width and porosity, and the volumetric flow rate is 
the p r o d u c t  of w i d t h  and the superficial velocity. 
Expressing the superficial velocity in terms of RePr

v = RePr a"o height (3.6-2)
the residence time for the vessel is

. _ height2 e
re s  - RePr (3.6-3)

In dimensionless terms, the height is

height = (20-1)^ (3.6-4)
and the dimensionless residence time for the vessel is 

= _e /N-l \2Tres RePr 1,20-1/ (3.6-5)
Finally, the dimensionless residence time is

. _ t RePr/20-l\ 2
T c \N—1 / (3.6—6)

The dimensionless time x was used in executing the program. 
t* was calculated for presentation of RTDs only.

One last step remains to allow full comparis ion of the 
RTDs : the dimensionless concentration of the pulse must be
standardized. This was done by requiring a standard mass of 
tracer to be introduced with the flow. This mass is given 
by

mace - volumetric x pulse x n.flow rate duration Otnitial (3.6-7)
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In terms of RePr the mass is

111388 = height x wl<3th x initial x duration (3.6-8)
To obtain a dimensionless initial concentration the mass
must be expressed in terms of the reference concentration
CAo , as well. Defining CAo as the initial concentration in
a perfectly mixed vessel, the mass may be obtained from the
relationship

r _ mass____
Ao - void volume (3.6-9)

Substituting and rearranging,
mass = CAo x height x width x e (3.6-10)

The result of equating the two expressions for mass is

.Ao rvciTi. m pulse duration (3.6-11)
The pulse duration in dimensionless terms is 1

pulse - An- to /H2\ duration “tracery (3.6-12)
where A t  is the dimensionless time step and Ntrace is the
number of time steps. The initial concentration becomes

E =________e_______ /N-l Y
initial RePr A t N trace\20-1/ (3.6-13)

F i g u r e  3.2 m a y  be r e c o n s t r u c t e d  in t e r m s  of the
dimensionless concentration and dimensionless residence time
defined in this section. Rewriting Einitial as

^initial = a/iilrace (3.6-14)
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and the pulse duration 8 as
6 = At • Ntrace (3.6—15)

or ,
r* _ At Ntrace

Tres (3.6-16)
Figure 3.4 resutls. It is apparent that the area under the
pulse is equal to one. Applying conservation of mass, the
following relationship for the average exit concentration
may be deduced

(“ E (t* )dT* = 1 (3.6-17)
Hence, the area beneath the RTD curve will always be one.
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4. THE PERFECTLY MIXED VESSEL AND PLUG FLOW

As discussed in the introduction, tracer response 
theory presents two limiting cases: the perfectly mixed
vessel, and plug f l o w . For compar i s ion with results of 
computations, these will be developed in the dimensionless 
variables of this paper : E and t *  .

The response of a perfectly mixed vessel to a unit 
impulse is given by

E = exp- (t* ) (4.0-1)
Applying equation (3.6-17) the predictable result is

exp- ( r* ) df* = 1 (4.0-2)o
Having set the reference concentration equal to the initial 
concentration in the perfectly mixed vessel the initial 
concentration in dimensionless terms must be

E = ^  = 1 (4.0-3)
For plug flow, the species equation for tracer becomes

eil = A-flfS - vM]e 8t Le L3Y2 V 3YJ (4.0-4)
following the solution presented by Friedley [15] we use the 
boundary conditions
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The Laplace transform solution for a unit impulse is given 
by

E(Y,s) = G (Y,s) • <5 = G (Y,s) (4.0-6)
where G (Y, s) is the transfer function. Taking the limit as 
the bed height approaches infinity, the inverse of the 
transfer function, and hence the exit concentration is

E(Y-^ = M p r f e x P -Pe
4'i*r

(T* -1) (4.0-7)
Results for plug flow are characterized by a Peclet 

number for mass dispersion, reference Friedley.
pe = height D (4.0-8)

Since
RePr = h e i g h t ^

a (4.0-9)
and

Le =

The Peclet number may be reconstructed as 
Pe = RePr • Le

(4.0-10)

(4.0-11)
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5. PRESENTATION OF RESULTS

5.1 Increase in Vorticity with Time
The first task was to recognize the presence of free 

convection and detect when the steady state had been 
achieved. As previously d i s c u s s e d , pr e li min ary  tests 
suggested using the natural logarithm of the rms average 
vorticity as it varied with time. Graphs of the natural log 
of the dimensionless vorticity versus dimensionless time are 
presented in Figures 5.1 through 5.4 for various RePr and Ra 
numbers. Convecting cases are easily identified by a linear 
growth in the log of vorticity which abruptly ceases when 
the steady state is reached. The overshoot and oscillation 
observed at the juncture is typical of an implicit method. 
N o n - c o n v e c t i n g  c a s e s  w e r e  a l s o  e a s i l y  identified: 
discounting the initial start-up, no growth in vorticity was 
discerned. In summary, the vor ticity crit eri on  tells 
unambiguously when steady state is reached.
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5.2 Stream Function and Temperature Contours
Co nf irm ati on that free convection was occur ing was 

readily obtained by viewing contour plots of the stream 
function and temperature at steady state. Cell patterns 
with one, two, three, and four cells were observed. Results 
for a square grid, aspect ratio equal to one (M/N = 20/20), 
are summarized in Table 5.1. Figure 5.5 presents a sample 
initial temperature profile for RePr = 0. Representative 
examples of paired stream function and temperature contours 
for convecting flow are presented in Figures 5.6 through 
5.15. Additional flow contours for various aspect ratios 
are presented in Figures 5.16 through 5.23 for RePr = 4, Ra 
= 200 and in Figures 5.24 and 5.25 for RePr = 4, Ra =600.
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Table 5.1
Number of Convecting Cells, M/N = 20/20

RePr 10
Ra
100
140
200
400
600
800

1000
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Figure 5.5
Initial Temperature Contour

RePr=0, M/N=20/20



Figure 5.6
Stream Function Contour

RePr=0, Ra=200, M/N=20/20
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Figure 5.7
Temperature Contour

RePr=0, Ra=200, M/N=20/20
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Figure 5.8
Stream Function Contour

RePr=4, Ra=100, M/N=20/20
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Figure 5.9
Temperature Contour

RePr=4, Ra=100, M/N=20/20
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Figure 5.10
Stream Function Contour

RePr=4, Ra=200, M/N=20/20
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Figure 5.11
Temperature Contour

RePr=4, Ra=200, M/N=20/20
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Figure 5.12
Stream Function Contour

RePr=4, Ra=600, M/N=20/20



Figure 5.13
Temperature Contour

RePr=4, Ra=600, M/N=20/20
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Figure 5.14
Stream Function Contour

RePr=4, Ra=1000, M/N=20/20



Figure 5.15 
Temperature Contour 

RePr=4, Ra=1000, M/N=20/20
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Figure 5.20
Stream Function Contour

RePr=4, Ra=200, M/N=20/30



Figure 5.21 
Temperature Contour 

RePr=4, Ra=200f M/N=20/30
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Figure 5.22
Stream Function Contour

RePr=4, Ra-200, M/N=20/60
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Figure 5.23 
Temperature Contour 

RePr=4, Ra=200, M/N=20/60
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Figure 5.24 
Stream Function Contour 

RePr=4, Ra=600, M/N=20/60



Figure 5.25
Temperature Contour

ReP=4, Ra=600, M/N=20/60
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5.3 Tracer RTDs and Contours
The response of the various steady state flows to a 

rectangular pulse of tracer was observed for through-flow 
cases. It was desired to correlate variations in the number 
of cells, RePr, and Ra number with the form of the RTD. 
RTDs for various c a s e s , aspect ratio equal to one, are 
presented in Figures 5.26 through 5.35.

Tracer concentration contours corresponding to the RTD 
of Figure 5.29, RePr = 4, Ra = 200, M/N = 20/20 are
presented at successive times in Figures 5.36 through 5.47; 
these contours allow the movement of tracer through the flow 
to be followed. (Refer to Figures 5.10 and 5.11 for the 
applicable stream function and temperature contours.) 
Additional RTDs for variations in the aspect ratio are 
presented in Figures 5.48 through 5.52.
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Figure 5.26
Residence Time Distribution

RePr=l, Ra=200 M/N=20/20, At =.0001
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Residence Time Distribution
RePr=l, Ra=600, M/N=20/20, A t =.0001
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Figure 5.28
Residence Time Distribution

RePr=4, Ra=100, M/N=20/20, At =.0001
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Figure 5.29
Residence Time Distribution

RePr=4, Ra=200, M/N=20/20, At =.0001
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Figure 5.30
Residence Time Distribution

RePr=4, Ra=600, M/N=20/20, 6%=.0001



DI
ME

NS
IO

NL
ES

S 
C
O
N
C
E
N
T
R
A
T
I
O
N

T-3155 81

o

ob-

o>

o
00

o

D

O

02 0 4 0.6 0.8 1.0 12 1.4 1 6 1.8 2.0
D I M E N S I O N L E S S  R E S I D E N C E  T I M E

Figure 5.31
Residence Time Distribution

RaPr=4, Ra=1000, M/N=20/20, At =.0001
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Figure 5.32
Residence Time Distribution

RePr=10 , Ra=200, M/N=20/20, A t = .0001
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Figure 5.33
Residence Time Distribution

RePr=10, Ra=400, M/N=20/20, At =.0001
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Figure 5.34
Residence Time Distribution

RePr=10, Ra=600, M/N=20/20, At =.0001
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Figure 5.35
Residence Time Distribution

RePr=10, Ra=1000, M/N=20/20, At =.0001



T-3155 86

Figure 5.36
Tracer Concentration Contour

t* =.057, RePr=4, Ra=200, M/N=20/20



T-3155

Figure 5.37
Tracer Concentration Contour

t * =.114, RePr=4, Ra=200, M/N=20/20



Figure 5.38
Tracer Concentration Contour

t *=.171, RePr=4, Ra=200, M/N=20/20
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Figure 5.39
Tracer Concentration Contour

t* = .229, RePr=4, Ra=200, M/N=20/20
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Figure 5.40
Tracer Concentration Contour

t * =.286, RePr=4, Ra=200, M/N=20/20
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Figure 5.41
Tracer Concentration Contour

t * = .343, RePr=4, Ra=200, M/N=20/20



Figure 5.42
Tracer Concentration Contour

t * = .400 , RePr=4, Ra=200, M/N=20/20
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Figure 5.43
Tracer Concentration Contour

t * =.457, RePr=4, Ra=200, M/N=20/20
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Figure 5.44
Tracer Concentration Contour

t * =.514, RePr=4, Ra=200, M/N=20/20



Figure 5.45
Tracer Concentration Contour

t *=.571, RePr=4, Ra=200, M/N=20/20
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Figure 5.46
Tracer Concentration Contour

t * =.629, RePr=4, Ra=200, M/N=20/20
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Figure 5.47
Tracer Concentration Contour

t * =.686, RePr=4, Ra=200, M/N=20/20
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Figure 5.48
Residence Time Distribution

RePr=4, Ra=200, M/N=60/20, At =.0001
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Figure 5.49
Residence Time Distribution

RePr=4, Ra=200, M/N=30/20, A t =.0001
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Figure 5.50
Residence Time Distribution

RePr=4, Ra=200, M/N=20/30, Ax=.0001
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Figure 5.51
Residence Time Distribution

RePr=4, Ra=200, M/N=20/60, A t -.0002
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Figure 5.52
Residence Time Distribution

RePr=4, Ra=600, M/N=20/60f At =.0002
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5.4 Verification of RTD Results

5.4.1 Plug Flow
Plug flow results calculated by numerical techniques 

can be compared to those predicted by theory. A graph of 
the theoretical results for mass dispersion Peclet numbers 
of 40, 160 and 400, corresponding to RePr = 1 , 4  and 10 is 
presented in Figure 5.53. Figure 5.54 presents the results 
for the explicit upwind differencing method with a 20x20 
grid. Figure 5.55 shows the improvement in going to a 40x40 
grid for RePr = 10. Figure 5.56 shows the result of using 
an ADI method for a 20x20 grid.
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Figure 5.53 

Theoretical Residence Time Distributions 
Plug Flow and Perfectly Mixed Vessel
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Figure 5.54
Residence Time Distributions

Plug Flow, Explicit Upwind Differencing, M/N=20/20
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Residence Time Distribution
Plug Flow, Explicit Upwind Differencing, M/N=40/40
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Figure 5.56
Residence Time Distributions

Alternating Direction Implicit, M/N=20/20
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5.4.2 Convecting Flows
This section is included to illustrate the effects of 

various parameters and numerical techniques on convecting 
flow RTDs. Figures 5.57 and 5.58, together with Figure 5.31, 
show the effect of varying time and spatial steps for a 
square grid, RePr=4, Ra=1000. Figures 5.59 and 5.60 show 
the results using an ADI technique for two cases. The cases 
are RePr~4, Ra~2OO (reference Figure 5.29 for the explicit 
upwind differencing result) and RePr = 4, Ra = 1000 (Figure 
5.31) . Use of a larger grid, 30x30 , for RePr = 4, Ra =1000 
was necessary with the ADI calculation as it was critically 
unstable for a grid size of 20x20.
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Figure 5.57
Residence Time Distribution

RePr=4, Ra=1000, M/N=20/20,At =.00005
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Residence Time Distribution

RePr=4, Ra=1000, M/N=40/40, A t =.0002
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Figure 5.59
ADI Residence Time Distribution

RePr=4, Ra=200, M/N=20/20, At =.0001
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ADI Residence Time Distribution

RePr=4, Ra=1000, M/N=30/30, A t =.0001
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6. DISCUSSION OF RESULTS

6.1 Detection of Free Convection and the Steady State
Plotting the log of the rms vorticity against time

provides a reliable indicator of when the steady state has 
been attained. Combined with contours of the stream 
function and temperature the presence or absence of free 
convection can be ascertained. The time taken to achieve 
steady free convection can also be found.

6.2 The Critical Rayleigh Number
A brief comparision of linear and energy theory with 

the calculated results is presented to verify the numerical 
method is substantially accurate. Theory predicts that the 
onset of free convection in porous media is characterized by 
a critical Rayleigh number, Racr , for a given R e P r . The 
theoretical results of Hornsy and Sherwood were graphically 
presented in Figure 1.1 of the Introduciton. The graph is 
duplicated in Figure 6.1 with points plotted for the cases 
studied. All calculated convecting cases are in the 
theoretical free c o n v e c t i o n  r e g i o n . All calculated 
non-convecting cases are below the linear limit for the 
onset of convection. Calculated results are in agreement 
with theory.
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Figure 6.1
Comparision of Cases Studied with Linear Theory
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The numerical calculations were neither designed nor 
expected to yield definitive determinations of the critical 
Rayleigh numbers. Nevertheless, an attempt was made to 
identify the critical Rayleigh number for the no-flow case, 
RePr = 0, where the well-known result for porous media, 
presented first by Lapwood [12] and refined by Katto and 
Masuoko [13 ] is RaCr = 4 tt 2. The critical Rayleigh number 
was estimated by plotting the slopes obtained for various Ra 
numbers from the Increase in Vorticity graph, RePr = 0, M/N 
= 20/20 (Figure 5.1), against time and extrapolating to the 
point of zero slope. The graph, presented in Figure 6.2 
gives a critical Rayleigh number of about 52. However, 
careful examination of data for small rates of growth 
suggests that a fit over these points might well extrapolate 
to a value closer to 4 tt 2.

6.3 Stream Function and Temperature Contours
The presence of free convection was confirmed by the 

observation of convecting cells in the stream function 
profiles. Both symmetrical and asymmetrical flows were 
observed. The number of cells increases with both Ra and 
R e P r . Flow contours for varied aspect ratios show an 
increase in the number of cells for an increased width. For 
an increase in height, RePr = 4, Ra = 200, the cells became

A R T H U R  LAKES LIBRARY 
C O L O R A D O  S C H O O L  of MINES 
GOLDEN. C O L O R A D O  80401
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Figure 6.2
Critical Rayleigh Number Determination for No-Flow
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narrower (M/N = 2 0/60) and subsequently merged (M/N = 
20/20). For the case RePr = 4, Ra = 600, asymmetrical flow 
with partially stacked cells was produced.

Inspection of the p a i r e d  s t r e a m  f u n c t i o n  and 
temperature contours readily shows that the thermal gradient 
is the driving force for free convection. In all cases, the 
thermal gradient increases where upward flow is observed and 
decreases with downward flow.

The direction of flow rotation consistently reversed in 
going from no-flow to net through-flow. (Reversal also 
occurred for one of the aspect ratio cases.) There is no 
credible physical r e a s o n , within the context of this 
n u m e r i c a l  s t u d y  , for p r e f e r r i n g  c l o c k w i s e  to 
counter-clockwise rotation, particularly for the single cell 
cases. This phenomenon is not understood.

The ADI calculations are believed to be reasonably 
accurate and represenative of steady state flow. The time 
step, and spatial increment chosen are satisfactory. The 
wisdom of the choice of the full grid rather than a 
half-grid with symmetry at the centerline was borne out in 
the results as asymmetrical flows were observed.

6.4 Analysis of the RTDs and Tracer Contours
The RTDs presented are in qualitative agreement with
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the experimental work of Feuerherm [16]. Plug flow RTDs 
show the characteristic single peak. Flows with convection 
have RTDs with multiple peaks.

Contour plots of the tracer concentration, Figures 5.36 
through 5.47, show movement through the flow field in 
agreement with the calculated R T D , Figure 5.29. The 
successive peaks are seen to result from recirculation of 
the tracer in the convection cells. Visual inspection of 
the RTDs indicates a dépendance on RePr and Ra, and none on 
the number of cells.

The RTDs were characterized in terms of a mixing time 
given by the reciprocal of the decay rate constant, where 
the decay rate constant is the absolute value of the slope 
of the log of the amplitude as a function of time. This 
parameter is widely used in mixing studies [2 ]. The 
amplitude was determined by taking half the value of the 
peak to valley distance. The first peak, first valley, and 
last peak were dicounted. Results for an aspect ratio of 
one are presented in Table 6.1. Graphs of the mixing time 
vs. Ra number and RePr are presented in Figures 6.3 and 6.4. 
They show a decrease in mixing time with increasing Ra 
number and an increase with increasing RePr.

The RTD results are intermediate to the plug flow and 
perfectly mixed models. In general, the RTDs with high
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Table 6.1
Mixing Times for Various RePr and Ra, M/N=20/20

RePr_____ Ra_____ Mixing time t*

1 200 0.2122
600 0.0873

4 100 1.1783
200 0.7180
600 0.3099

1000 0.1655

10 400 1.0524
600 0.5172

1000 0.4490
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mixing times approximate plug flow results. Those with low 
mixing times approach the perfectly mixed vessel model.

RTDs for the various aspect ratios showed little change 
in tracer réponse for an increase in width. (Using ADI 
techniques the RTDs could be super imposed ; the change 
visible on the upwind differencing graphs is attributed to 
numerical dispersion.) This result is in agreement with the 
equations and the physical problem. An increase in height 
reduces the mixing time. Mixing times for the different 
aspect ratios are presented in Table 6.2 and in Figure 6.5.

6.5 Validity of the Tracer Response Calculations

6.5.1 Conservation of the Tracer Species
As a check on the conservation of the tracer species, 

and hence the precision of the numerical method, the area 
under each RTD curve was measured and compared to o n e , the 
value expected at infinite time. Results for plug flow were 
exact, those for convecting flow, aspect ratio equal to one, 
are summarized in Table 6.3. Agreement was good in all 
cases.

6.5.2 Plug Flow
The basic shape of the calculated upwind differencing
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Table 6.2
Mixing Times for Various Aspect Ratios

Aspect Mixing Time
M/N_____ Ratio___________r^______

RePr = 4, Ra = 200
20/60 0.333 0.4646
20/30 0.667 0.5439
20/20 1.000 0.7180
30/20 1.500 0.7137
60/20 3.000 0.7428

RePr = 4, Ra = 600
20/60 0.333
20/20 1.000

0.0718
0.3099
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Table 6.3 
Area Under the RTD Curve

RePr Ra Area E final

1 200 0.791 0.357
600 0.844 0.486

4 100 0.854 0.088
200 0.820 0.134
600 0.955 0.069

1000 0.995 0.014

10 200 0.848 0.079
400 0.831 0.101
600 0.853 0.123

1000 0.900 0.109
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plug flow RTDs is correct. Agreement with the theoretical 
calculations is best at low RePr and increasingly worse at 
high R e P r . Two causes were investigated : size of the
spatial increment and the dispersive effects of artificial 
viscosity inherent in the upwind differencing technique. A 
smaller spatial increment was tested with RePr = 10 by 
increasing the grid size from 2 0x20 to 40x40. S o m e  
improvement in peak height is noted. Compar ision of the 
upwind differencing plug flow RTDs with the ADI results, 
both generated on a 20x20 grid, suggests the dispersive 
effects of the upwind differencing technique are the primary 
cause of the low peak heights for plug flow.

6.5.3 Convecting Flows
The effects of spatial increment, time step, and 

numerical technique were tested on convecting cases. 
Variations in spatial increment and time step (as presented 
in Figures 5.31, 5.57 and 5.58) did not produce significant 
differences. Comparision of the upwind differencing and ADI 
methods - a check on the effects of numerical dispersion 
associated with upwind differencing - shows g e n e r a l  
agreement in the prediction of high/low mixing times 
(Figures 5.29 and 5.59; 5.31 and 5.60). Also noted for the 
ADI results is a substantial amount of noise, and for lower
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mixing times, considerable oscillations about zero. (The 
effect of changing the pulse duration was also tested; no 
difference was noted for values of Ntrace - 1 and 10. )

6.5.4 Summary
Based on the above compar i s ion the r e s u l t s  for 

convecting flows were determined to be less affected by 
numerical dispersion resulting from upwind differencing than 
were the plug flow results. Explicit upwind differencing 
was judged suitable for general predictions of the effect of 
the RePr and Ra on the mixing time. ADI methods are 
unsuitable, particularly at high mixing times, because of 
excessive overshoot and oscillation.

6.6 Examples : Application to Oil Shale Retorts
Because work in dimensionless variables is difficult to 

visualize in terms of physical problems, two examples - 
represenative of pilot scale oil shale retorts - are 
presented here. References and calculations for typical 
values of the parameters may be found in Appendix A.

Example 1
Reference figures 5.2, 5.27 and Table 6.1.

Le = 40
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RePr = 1 
Ra = 600 
M/N = 20/20 

Take the case where 
Y = 2x10” 4 
£ = 0.35 
height = 1.0 m 
c l '  = 0.0033 m 2/sec 

The superficial velocity, vc , may be obtained from the 
relationship

_ RePr cT
Vo ” height (3.6-2)
v0 = 0.00 33 m/sec 

The time for the flow pattern to reach steady state is 
obtained from Figure 5.2 in units of dimensionless time 

t s s  = 1390 
Since,

the actual time is
tss = 4.212x105 sec = 117.0 hr = 4.875 days 

The residence time for the vessel, t̂ es' is obtained from the

T (2.1-22)
and

(3.6-4)
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relationship

T = - ~£...  f e L - VTres RePr \20-l/ (3.6-5)
and equation (2.1-22) as

tres = 106.1 sec
The mixing time in terms of dimensionless residence time is
obtained from Table 6.1

Tm ix ”  0 . 0 8 7 3

Applying equation (2.1-22) and
T* = t RePr/'20-l\ '

E VN-1 7 (3.6-3)
the mixing time is

tmix = 9 -259 sec
The time to the arrival of the first peak can be read from 
Figure 5.27 as

Tpeak = 0 - 0 1 9 1  

and similarly be converted to
tpeak = 2 -026 sec 

Example 2
Reference Figures 5.3, 5.29 and Table 6.1 

Le = 40 
RePr = 4 
Ra = 200 
M/N = 20/20
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Take the case where 
y = 2x10“ 4 
e = 0.25 
height = 3.0 m

= 0.0050 m 2/sec 
Proceeding as before, the superficial velocity is 

v0 = 0.006667 m/sec 
The time to reach steady state, using Figure 5.3, is 

tss = 2.448xl06 sec = 680.0 hr = 28.33 days 
The residence time for the vessel is 

tres = 112 . 5 sec 
Using Table 6.1, the mixing time is 

tmix = 80.77 sec 
and the time to the first peak, using Figure 5.29, is 

t-peak = 3-7 . 88 sec
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7. CONCLUSIONS

From the results obtained the following conclusions are 
drawn:

a) The achievement of steady state can be verified 
from plots of the natural log of the rms average 
vorticity.
b) Points where convection was found are in agreement 
with linear theory.
c) The number of cells increases with both increasing 
RePr and Ra.
d) Both symmetrical and asymmetrical flow patterns are 
possible.
e) ADI c alculations are reasonably accurate and 
capable of representing steady-state flows.
f) Tracer RTDs are in qualitative agreement with the 
experimental results of Feuerherm
g ) S u c c e s s i v e  p e a k s  in the R T D s  r e s u l t  f r o m  
recirculation of tracer in the rotating convection 
cells.
h) Tracer concentration contours are in agreement with 
the RTDs based on the average exit age.
i) RTD results for free conveciton are intermediate to 
the perfectly mixed vessel and plug flow cases.
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j) RTD results for free convection are characterized 
by R a , RePr and the height of the vessel. They are 
independent of the number of cells and the vessel 
width.
k ) Mixing times increase with increasing RePr and 
decrease with increasing Ra and increasing height.
1) The effects of numerical dispersion, inherent in 
upwind differencing, are most noticeable on plug flows 
and of less importance with convecting flows, 
m) Explicit upwind differencing is suitable for 
producing a qualitative representation of tracer 
response.
n ) ADI methods alone are unsuitable for tracer 
response calculations because of excessive overshoot 
and oscillation.

In summation, RTD methods are decisive in detecting free 
convection and capable of qualitatively characterizing the 
flow in terms of mixing times.
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NOMENCLATURE

A
ADI
b
cA
Qa.o
^initial
Cr,

Einitial
E
f
9
G
h
H
i
j
]
k
K
Le
M

area under the concentrâtion-time curve
Alternating Direction Implicit; a numerical method
subscript for bed properties
concentration of tracer
reference concentration of tracer
concentration of tracer in the impulse
specific heat
mass dispersion coefficient
dimensionless tracer concentration
dimensionless tracer concentration in the impulse
subscript for fluid properties
gravi ty
transfer function 
spatial increment 
reference length
subscript for the horizontal direction 
subscript for the vertical direction 
unit vector in the vertical direction 
thermal conductivity 
bed permeability 
Lewis number
number of grid points in the hoizontal direction
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n superscript for time
N number of grid points in the vertical direction
Ntrace number of time steps for pulse duration
OPTOM relaxation factor for SOR
P pressure
PI parameter for Upwind Differencing
P2 parameter for Upwind Differencing
Pe Peclet number
Ra Rayleigh number
Ra critical Rayleigh number
RePr Reynolds-Prandtl
rms root mean square
SOR Successive Overrelaxation; a numerical method
t time
tres residence time for the vessel
T temperature
To temperature at the top
T ! temperature at the bottom
(Tj- T q) reference temperature difference
U dimensionless horizontal component of superficial

velocity
UB backward difference in velocity U;

used in upwind differencing 
UF forward difference in velocity U;



used in upwind differencing 
superficial velocity 
initial superficial velocity
horizontal component of superficial velocity 
vertical component of superficial velocity 
dimensionless vertical component of superficial 
velocity
dimensionless initial superficial velocity
backward difference in velocity V;
used in upwind differencing
forward difference in velocity V?
used in upwind differencing
distance in the horizontal direction
dimensionless distance in the horizontal direction
distance in the vertical direction
dimensionless distance in the vertical direction
effective thermal diffusivity
coefficient of volume expansion
impulse function
impulse function in dimensionless time
bed porosity
ratio of specific heats
density
density at temperature T 0
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stream function
¥ dimensionless stream function
T dimensionless time

Tres residence time for the vessel in 
terms

dimensionless

T * dimensionless residence time
A t dimensionless time step
0 dimensionless temperature difference
V kinematic viscosity
Ç vortici ty
-><ü dimensionless vorticity
* superscript for the intermediate time step, n+1/2
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TYPICAL PARAMETERS
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A.1 Laboratory Scale Oil Shale Retort Parameters
Typical values for laboratory scale oil shale retorts 

were obtained from Raley, Sandholtz and Ackerman [18] for 
1.5 x 0.3m and 6 x 0.9m retorts using Anvil Points shale. 
They are presented in Table A.1 and A.2.

Bed permeabilities for the 1.5 x 0.3m shale oil retort 
may be calculated form Darcy's law by neglecting the effects 
of gravity

K = -,— -̂0̂ —(AP/Ay)
For a nominal fluid viscosity of 

vp as 0.041 g/m-sec 
the permeability can vary from initial values of 7.34x10” G 
to 1.83x10  ̂ m 2 to values at maximum pressure drop of 
5.03x10” 8 to 1.60x10” 5 m 2.

Values of thermal conductivity and thermal diffusivity 
for Anvil Points oil shale are found in DuBow et al. [19]. 
Typical thermal conductivities range from 0.43 to 1.51 
kcal/m-hr°C at 380°C. Thermal diffusivities at 380°C vary 
from 0.002 to 0.005 m 2/sec

A.2 Experimental Velocities
Additional values for labortory scale packed bed reactor 
velocities were obtained from Feuerherm [16]. They ranged
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Table A.2 
Oil Shale Parameters 6

Shale
Size, cm -7.6,+0

-  20
Porosity 0.25

Gas Feed
m/sec 0.02

x 0.9m Retort

(61 wt %) 
(39 wt%)
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from 0.000715 to 0.001001 m/sec.

A.3 Calculation of Effective Thermal Conductivity and 
Diffusivity
The effective thermal conductivity in a packed bed may be 
estimated from the procedure outlined by Yagi and Kunii 
[20]. The effective thermal diffusivity may be obtained 
from this value. A typical value is calculated. Using the 
parameters

e = 0.35
P(emissivity) = 0.9 
T = 700 °C

the heat transfer coefficients for thermal radiation are 
obtained. From solid surface to solid surface :

hrs = 147.12
From void to void :

h ^  = 174.59
The ratio of the effective thermal conductivity for a 
motionless gas, , to the fluid thermal conductivity is
given by
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kb _ 1 - c
kf kf_ , 1_______

ks l/cf) + dphrs/kf
Using the values

(p = 0 .025
kf = 0.0524
ks = 0.9
dp — 0.03

The calculated ratio is 
. o
4 b = 44.7927

kb° = 2.347 kcal/m-hr °C 
For low flow rates the effective thermal conductivity of the 
bed, kb, is equal to that for motionless gas 

kb = 2.347 kcal/m-hr9C 
The effective thermal diffusivity may now be calculated from

(p Cp)f
for

pf = 0.000409 g/cm 
Çpf = 0.26 cal/g

the value is
= 0.00613 m 2/sec

A.4 Calculation of Rayleigh Number and RePr 
The Rayleigh number is given by
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R a  =
a ' v

Typical parameters are 
g = 9 . 8  m/sec2 
(Ti-Tq ) = 70°C 
K = lxl0~4m 2/sec 
a" = 0.005 m 2/sec 
v = 1.002x10"4m 2/sec 

H is the height; a value of 1.5 m is used. The coefficient 
of volume expansion, B , is on the order of 10~3 to 10"4 .
For ideal gases it is given by 

B = 1/T
For a temperature of 700 °C (= 973 °K), g = 0.001/°C. The 
resulting Ra is 

Ra = 205.4
A corresponding RePr can be determined from the 

relationship

RePr = v p J1.̂ ighta

for a velocity of 0.02 m/sec the RePr is 
RePr = 6.0

This case would exhibit free convection.

A.5 Calculation of Lewis Number
A nominal value for the Lewis number was derived based
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on the relationship between the particle Reynolds number, 
Rep, and the particle Peclet number. Pep, presented in 
Himmelblau and Bishoff's Figure A.10 [21]. The Rep is 
obtained from

where the RePr is related to the superficial velocity by
RePr = Xoheight

a
and the effective Prandtl number is obtained from the fluid 
Prandtl number by

The effective Peclet number, Pe, and Lewis number for mass 
dispersion. Le, are calculated from

Using the values, 
height = 3m 
dp/height = 1/100 
a' = 0.005 m^sec 
Prf = 0.733 
kb/kf = 44.7927 

Lewis numbers were calculated for RePr's of 1, 4, and 10.

Pr = prf 1^

Pe = Pe^

Le Pe
RePr
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Reference Table A.3. A nominal value of Le = 40 was 
selected and used in all calculations.
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Table A.3 
Calculation of Lewis Number

RePr_______Vo_______Rep______1/Pep Pep_____ Pe________Le
1 .00167 0.611 1.08 0.926 92.6 92.6
4 .00667 2.445 0.63 1.587 158.7 39.7

10 .01670 6.112 0.58 1.724 172.4 17.2
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APPENDIX B 
COMPUTER PROGRAM
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B.l Computer Executions
All executions were performed on a DECsystem-1091. The 

CPU time for flow and tracer executions follows in Tables. 
The maximum number of iterations in the successive 
overrelaxation subroutine during an execution was typically 
24.

All contour plots were generated using Surface II 
Graphics System, Sampson [22 ].
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TaDie ti.i
CPU Times for Flow Executions

RePr Ra M/N CPU time
0 100 20/20 16:58

140 20/20 9:43
200 20/20 7:29
400 20/20 4:17
600 20/20 3:41
800 20/20 3:02

1 100 20/20 7:14
200 20/20 3:12
600 20/20 2:44

1000 20/20 1:15
4 100 20/20 12:26

200 20/20 3:09
20/30 4:59
20/60 10:59
30/20 5:12
60/20 9:16

600 20/20 1:28
1000 20/20 1:20

30/30 5:08
10 200 20/20 8:16

400 20/20 2:12
600 20/20 1:23
800 20/20 1:25

1000 20/20 2:27
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Tabel B .2 
CPU Times for Tracer Executions

RePr Ra M/N CPU time

10

200 20/20 .0001 2:36
600 20/20 .0001 1:44
100 20/20 .0001 1:34
200 20/20 .0001 1:31

20/20 .0001 4:51
20/30 .0001 4:55
20/60 .0002 5:27
30/20 .0001 2:40
60/20 .0001 5:26

600 20/20 .0001 1:32
1000 20/20 .0001 1:31

20/20 .0001 8:58
20/20 .00005 1:51
40/40 .0002 8:27

200 20/20 .0001 0:36
400 20/20 .0001 0:40
600 20/20 .0001 0:44

1000 20/20 .0001 0:38

(min:sec)

(ADI)

(ADI)
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B .2 Flow Program: ADI

c-----------------------------------------------------------------
C MAIN PROGRAM FLOW.FOR
C INSTABILITY OF FLUID FLOW THROUGH POROUS MEDIA HEATED FROM BELOW
C SUCCESSIVE OVERRELAXATION SOLUTION FOR THE
C STREAM FUNCTION
C ALTERNATING-DIRECTION IMPLICIT SOLUTION FOR TEMPERATURE
C TWO-DIMENSIONAL RECTANGULAR COORDINATES
C 'U(I,J)' VELOCITY IN THE X-DIRECTION
C 'V(I.J)' VELOCITY IN THE Y-DIRECTION
C 'THETA(IrJ)' TEMPERATURE
C 'PSI(I,J>‘ STREAM FUNCTION
C 'OMEGA(I.J > ' VORTICITY
C FLOW EXECUTION REQUIRES THE FOLLOWING SUBROUTINES:
C TEMP.FOR
C SORLX.FOR
C IMPX.FOR
C TRIDX.FOR
C IMPY.FOR
C TRIDY.FOR
C----------------------- -------------------------------------------------

•»' IS THE X-DIRECTION INDEX 
'N ' IS THE Y-DIRECTION INDEX

PARAMETER M-20 
PARAMETER N-60

C 'K ' IS THE GREATER OF 'M' AND 'N'
PARAMETER K»60

C 'L' SPECIFIES WHERE TO WRITE
PARAMETER L-4
DIMENSION U(M,N>,V(M,N) ,THETA(M,N)» TDELTA < M » N ) ,
1 OMEGA(M .N ),OM(M ,N >,PS I(M ,N ) ,A C K ),C (K ) ,D (K >,
1G(K),QS(K > ,BETA(K )» GAMMA(K) ,TH(N ),POLD(M ,N ),PS < M ,N ) ,P(M,N> DOUBLE PRECISION THETA,G .GS,TH,POLD,PS,P,A ,C ,D ,BETA,GAMMA DOUBLE PRECISION U ,V.TDELTA,OMEGA,OM,PSI 
COMMUN ABLk/ B.MMl,NM1,C1,C2.C3
WRITE(4,100)

100 FORMAT(5X,'ENTER TODAYS DATE'./)
READ(4 » 110 > NDATE 

110 FORMATCI>

C 'RA' IS THE RAYLEIGH NUMBER
C 'REPR' IS THE REYNOLDS-PRANDTL NUMBER
C 'DT' IS THE TIME INCREMENT
C 'MAXSTP' IS THE MAXIMUM NUMBER OF TIME STEPS

WRITE(4,120)
120 FORMAT(5X.'ENTER RA, REPR, DT, MAXSTP',/)

READ<4,130)RA,REPR,DT,MAXSTP 
130 FORMAT(3E,I>
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c
c

c

140

C

10

12

CC

1 50
14
160

'GAM' IS THE FLUID TO MEDIUM HEAT CAPACITY-DENSITY RATIO 
'VO' IS THE INITIAL SUPERFICIAL VELOCITY

GAM ■ 2.E-4
VO = -REPR* <19.0/(N-1.0))

'H' IS THE SPACE INCREMENT
MM ■ M
NN = N
MM1 = M-l
MM2 * M-2
NM1 = N-l
NM2 = N-2
H = 1./(20.-1.>
RATIO = MM1/NM1
WRITE(4,140)RA,REPR,DT,MM,NN,RATIO
FORMAT(1H1 ,//,5X, 'FLOW EXECUTION',Z9X, 'RA= ' ,E/9X,
1 'REPR-',E/9X, 'DT»',E/9X, 'X-DIRECTION INDEX M=',
2I3/9X,'Y-DIRECTION INDEX N=',I3/SX,'ASPECT RATIO»'.E)

'Cl'. 'C2', 'C3' AND 'B ' ARE CONSTANTS IN THE ENERGY
EQUATION

Cl = 1./(H*H>
C2 « 2.*H
C3 » 2./(GAM*DT>
B » C3+2.*C1

SPECIFY INITIAL CONDITIONS FOR VORTICITY AND VELOCITY
T = 0.
NTUNIT = 1
DO 10 J = 1 » N 

DO 10 1=1rM
OMEGAtI,J) =0.

CONTINUE
DO 12 I = 1r M 

V (I,1 ) =V0 
V (I ,N > « VO 

CONTINUE
SUBROUTINE TEMP SPECIFIES THE INITIAL TEMPERATURE 
PROFILE

CALL TEMP < REPR,M .N .TH,THETA,I TEMP)
IF (ITEMP .EG. 0) GO TO 14 
WRITE(4,150)
FORMAT OX, 'UNIT STEP INITIAL TEMPERATURE DISTRIBUTION',/)
GO TO 16 
WRITEM. 160)
FORMATOX, STEADY STATE INITIAL TEMPERATURE DISTRIBUTION',/)
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C CALCULATE INITIAL AND BOUNDARY CONDITIONS FOR STREAM FUNCTION
IS AM - MM1

DO 18 I-l.M
ZLTA = VOS<AM/1?,>$<0.5-<1-1>/AM>
F TOT - FTOT+ABS(ZETA)
DO 18 J»1,N

PSI<1,J) • ZETA 
18 CONTINUE

FRMS « FTOT/M 
FTOT « O.

C BEGIN ITERATIVE PROCEDURE
C SUBROUTINE SORLX CALCULATES THE STREAM FUNCTION
C FROM THE VORTICITY FIELD
1 DO 20 I-l.M

DO 20 J«1,N
OM <I,J > - -OMEGA(I.J)

20 CONTINUE
CALL SORLX<PSI,ON,M.N.H..0010,ITER,RE,FRMS,ITMAX)

C CALCULATE VELOCITY FIELD
DO 24 J«2,NM1 DO 22 1*2,MM1

UlltJi - if61<I,J+1)-PSI(I,J-1))/C2 
V(I.J) « (—PSI(I♦1,J >♦PSI(Î-1,J))/C2 22 CONTINUE

V ( 1 , J ) * V < 2 , J )
V (M ,J) = V < MM1,J)

24 CONTINUE
C 'NSTEP' IS THE STEP NUMBER
C TERMINATE COMPUTATION IF NSTEP EXCEEDS MAXSTP
C INCREMENT TIME STEP BY ONE

NSTEP * NSTEP*1
IF (NSTEP .GT. MAXSTP) GO TO 2 
T = T+DT

C DETERMINE TEMPERATURE FIELD AT THE NEW TIME STEP WITH
C SUBROUTINES IHPX. IMPY, TRIDX, AND TRIDY

DO 30 I-l.M
DO 30 J*1,N
POLDd.J) * THETA ( I , J >

30 CONTINUE
CALL IMPX(POLD,PS,U ,V ,M ,N ,A ,C .D,QS,BETA,GAMMA)
CALL IMPY< PS,THETA,U,V.M,N,A,C.D,Q,NM2.BETA,GAMMA)

C CALCULATE VORTICITY FIELD
DO 32 J=2,NM1 

DO 32 1-2.MM1
OMEGA(I,J) « RA*(THETA(I*1,J)-THETA(1-1,J))/C2 

32 CONTINUE
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34

300

310
C
C
36

38
320
330

C

400
410

CC

420

40
430

CALCULATE RMS AVERAGE VORTICITY

OMTOT - 0.
DO 34 J«2,NM1 
DO 34 I»2 » MM1

OMTOT ■ OMTOT+ABS(OMEGA(I. J))
CONTINUE
OMRMS - OMTOT/(NM2*MM2>
OMLN - ALOGCOMRMS)
WRITE(10 r 300)T » OMLN 
FORMAT(2X r 2E19.12)
NOMEGA = NOMEGA+1
IF (NOMEGA .NE. 10) GO TO 36NOMEGA = 0
WRITE<4,310)NSTEP,T,OMLN
FORMAT(IX, NSTEP=',15,2X, 'TIME=',El 3.6,2X, 'OMLN=',E12.5)

OPTIONAL PLOTS OF STREAM FUNCTION AND TEMPERATURE 
CONTOURS

NPLOT » NPLOT+l
IF (NPLOT .EG. 50) GO TO 38
GO TO 1
NPLOT = O 
WRI TE(4,320)
F0RMAT(//2X, 'TYPE 1 FOR CONTOURS',/)
READ(4,330)NP 
FORMAT(I)
IF (NP .NE .1) GO TO 1 

OPTIONAL EXIT
WRITE(4,400)
FORMAT(10X, 'TYPE 1 TO ESCAPE PROGRAM EXECUTION',/) 
READ(4»410)NEXIT 
FORMAT(I)
IF (NEXIT .EG. 1) GO TO 2

OPTIONAL GENERATION OF DATA FILES BEFORE STEADY STATE 
IS REACHED

IF (NTUNIT .GT. 2) GO TO 1 
IF (NTUNIT .EG. 2) GO TO 40 
WRITEM,420)
FORMAT(10X, 'TYPE 1 FOR OPTIONAL TRACER DATA NO.1 ',/)
READ(4,410)N0PT1 
IF (N0PT1 .EG. 1) GO TO 3 
GO TO 1
WRITE(4,430)
FORMAT(10X, 'TYPE 1 FOR OPTIONAL TRACER DATA NO.2',/)
READ(4,410)N0PT2 
IF (N0PT2 .EG. 1) GO TO 4 
GO TO 1
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C EXIT AT THE STEADY STATE
2 NRITE(4,500>NSTEP,T,ITMAX
500 FORMATdHI ,/Z5X, 'END OF EXECUTION',/9X,

1 'NUMBER OF TIME STEPS-' ,I / 9 X T I M E * ',
2E/9X,'MAXIMUM ITERATIONS IN SORLX-',I)

C CREATE F0R15.DAT FOR STREAM FUNCTION CONTOUR 
C AT STEADY STATE

DO 50 J=1,N 
J J - N+1 —JWRITE!39.510)CPSI(I,JJ>,1=1,M)

50 .C0MT.UIL1E
510 FORMAT!IX,F22.16)

WRITE(39,140)RA,REPR,DT,MM,NN,RATIO 
WRI TE(39,520)T ,NDATE 

520 F0RMAT(5X, 'STREAM FUNCTION DATA',/9X, 'FLOW TIME-',
1 E/9X,'TODAYS DATE ',I)

C CREATE FORI 7.DAT FOR TEMPERATURE CONTOUR 
C AT STEADY STATE

DO 52 J=1,N 
JJ-N+1 —J
WRITE(49,530)(THETA(I,JJ > , 1 = 1 ,M>

52 CONTINUE
530 FORMAT(1X,5F10.4)

WRI TE(49,140)RA,REPR,DT,MM,NN,RAT 10 
WRITE(49,540)T,NDATE 

540 FORMAT(5X, 'TEMPERATURE DATA ' ,/9X, 'FLOW TIME- ' ,E/9X,
1 'TODAYS DATE ',I)

C CREATE FOR03.DAT FOR VELOCITY COMPONENTS AT
C STEADY STATE
C USED FOR TRACER RESPONSE EXECUTION

DO 54 J=1,N
WRITE(9,550)(U (I,J),I=1,M >

54 CONTINUE
DO 56 J-l,N

WRITE<9,550)(VC I,J) ,1 = 1,M)
56 CONTINUE
550 FORMAT(2X,5E19.12)

WRITE(9,560)RA,REPR,MM,NN,T ,NDATE 
560 FORMAT(2X,2E19.12,2I3,E19.12,16)

WRITECS.140)RA,REPR,DT,MM,NN,RATIO 
WRITE(S,570)T,NDATE 

570 F0RMAT(5X,'VELOCITY DATA FOR U AND V COMPONENTS',/9X,
1 'FLOW TIME-',E/9X,'TODAYS DATE ,I)
GO TO 5

C OPTIONAL DATA NO.1
3 DO SO J«1 ,N

WRITE(7,550)(U(I.J).1-1,M>
GO CONTINUE
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DO 62 J-lrNWRITE(7,350)(V<I,J),1-1,M)
62 CONTINUENTUNIT = 2

WRITE(7.560 > RA,REPR,MM,NN,T,NDATE 
WRI TE < 7 r140 > RA r REPR,DT r MM » NN » RAT10 
WRITE*?,570>T ,NDATE
DO 64 J-l,N 

JJ » N+l-J
WRITE < 37,510)<PSI(I,JJ),1 = 1,M)

64 CONTINUEWRITE(37,140)RA,RE PR,DT,MM,NN,RAT10 
WRITE(37,520)T,NDATE
DO 66 J = 1 ,N 

J J - N+1 — J
WRITE<47,530)(THETA*I,JJ),I=1,M> 

66 CONTINUEWRITE(47,140)RA,REPR,DT,MM,NN,RATI0 
WRITE<47,540)T,NDATE
GO TO 1

C OPTIONAL DATA NO.2
4 DO 70 J=l,N

WRITE<8,550)<U<I,J) ,I » I,M)
70 CONTINUE

DO 72 J-1 , N
WRITE<8,550)<V <I,J),I » 1,M )

72 CONTINUE
NTUNIT - 3
WRITE<8,560)RA,REPR,MM,NN,T ,NDATE 
WRITE*8,140)RA,REPR,DT,MM,NN,RATIO 
WRITE < 8,570)T ,NDATE
DO 74 J-l,N 

JJ = N+l-J
WRITE<38,510> <PSI<I ,JJ) ,1 = 1,M>74 CONTINUE

WRITE<38,140)RA,REPR,DT,MM,NN,RATI 0 
WRITE<38,520)T,NDATE
DO 76 J-l,N 

JJ - N+l-J
WRITE(48,530> < THETA <I,JJ),1-1,M) 

76 CONTINUE
WRI TE < 48,140)RA,RE PR,DT,MM,NN,RAT10 
WRITE<48,540)T,NDATE
GO TO 1

C EXIT
5 WRITE*10,140)RA,REPR,DT,MM,NN,RAT10

WRITE*167800TRDATE 
800 FORMAT<SX,'NSTEP,T ,OMLN DATA ,/8X, T0DAY6 DATE ,1)

END
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SUBROUTINE TEMP<REPR,N ,N ,TH,THETA,ITEMP)
C-------------------------------------------------------
C PROGRAM TEMP.FOR
C CALCULATES THE INITIAL TEMPERATURE PROFILEC--------------------------------------------------------

DIMENSION TH(N )» THETA(M » N )
DOUBLE PRECISION TH,THETA 
COMMON ZBLK/ B,MM1,NM1,C1,C2,C3

C NEXT STATEMENT ACTIVE FOR UNIT STEP INITIAL 
C TEMPERATURE DISTRIBUTION
C INACTIVE FOR STEADY STATE PROFILE IN THE ABSENCE 
C OF FREE CONVECTION
C I TEMP = 1
C GO TO 49

ITEMP = 0 
H * 1./(N-l.)
ABSRE - ABS(REPR)
IF (ABSRE .LT. 10.E-5) GO TO 29 
IF (REPR .GT. 50.) GO TO 49 
IF (REPR .LT. -50.) GO TO 69
DO 19 J =1,N

Y = 1.-(J-l.>*H
TH(J ) = (EXP(REPR*Y >-1. )/(EXP(REPR)-1.) 

19 CONTINUE
GO TO 89

29 DO 39 J=1,N
TH(J > = 1. — (J — 1. )*H 

39 CONTINUE
GO TO 89

49 TH(1> = 1.
DO 59 J = 2,N 

TH(J) = 0. 
59 CONTINUE

GO TO 89
69 DO 79 J = 1 r NM1

TH(J) = 1.
79 CONTINUE

TH(N ) = 0.
89 DO 99 J=1,N

DO 99 1=1,M
THETA(I,J> = TH(J) 

99 CONTINUE
RETURN
END
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SUBROUTINE SORLX<F ,0,M.N ,H .ERRMAX,ITER,RE,FRMS,ITNAX>
PROGRAM SORLX.FOR
SUCCESSIVE OVERRELAXATION SOLUTION OF POISSON'S 
EQUATION FOR THE STREAM FUNCTION

DIMENSION F(M,N>,Q(M,N)
COMMON /BLK/ B,MM1,NM1,C1,C2,C3 
DOUBLE PRECISION F.Q

C CALCULATE THE RELAXATION FACTOR, OPTOM
PI « 4.*ATAN(I.)
ALPHA = COS(PI/M)+COS(PI/N)
OPTOM = (8.—4.*SQRT(4.—ALPHA**2 > )/ALPHA**2 
I TER = 0
FBC =0.
DO 10 1=1,M

FBC = FBC+ABS(F (I,1))♦ABS(F (I,N ))
10 CONTINUE

DO 12 J=2,NM1
FBC * FBC+ABS(F(1,J))+ABS(F(M,J))

12 CONTINUE
C BEFORE EACH ITERATION ADD ONE TO ITER
2 ITER ■ ITER*1 

ERROR = 0.
FTOT = FBC

C CALCULATE F(I,J) AT INTERIOR POINTS
DO 3 J*2,NM1 

DO 3 1-2,MM1 
FOLD - F (I,J)
F ( I , J) = F (I,J)*.25*0PTOM*(F(1-1»J)*F(I*1,J) 

1 *F(I,J-l)*F(I,J*1)-4.*F<I,J >-H*H*G(I,J))
ERROR - ERROR*ABS(F (I,J)-FOLD)
FTOT - FTOT*ABS(F <I,J))

3 CONTINUE
C CONVERGENCE TEST

IF (ITER .LT. 5) GO TO 2 
IF (ITER .EG. 30) GO TO 7 
ERTEST « FTOT*ERRMAX 
IF (ERROR .GT. ERTEST) GO TO 2 

7 FRMS « FTOT/(N*M)
IF (ITER .GT. ITMAX) ITMAX -ITER
RETURN
END
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SUBROUTINE IHPX(POLD,PS,U,V,M,N,A,C,D,QS,BETA,GAMMA)C------ ---------------------------------------------------------------
C PROGRAM IMPX.FORC X—IMPLICIT HALF OF ADI SOLUTION, DETERMINES TEMPERATURES
C -PStl-,*^ AT TIME TMT/210T+ BY SOLVING fOR TRE ^ATTT ,
C 'B', 'C(I)', AND 'D(I)' COEFFICIENTS OF A TRIDIAGONAL MATRIX
C--------------------------------------------- -----------------------

DIMENSION POLD(M,N),PS<M,N),Q8CM),U(M,N>,V(M,N),A(M), 
IC(M>,D(M)
DIMENSION BETA CM),GAMMA(M)
DOUBLE PRECISION POLD,PS,QS,A,C.D,BETA,GAMMA
DOUBLE PRECISION U,V
COMMON /BLK/ B.MM1,NM1,C1,C2,C3

SET TEMPERATURE AT THE ENTRANCE AND EXIT,
' PS(I, 1 ) ' AND 'PS(I,N ) '

DO 01 I-I.M
PS< I ,1 ) « POLDC1,1)
PS <I,N ) = POLDCI,N)

01 CONTINUE
C FOR EACH ' J ' , DETERMINE THE NEW TEMPERATURES 'PSCI,J> '
C FOR 1=1 THROUGH I=M

DO 11 J = 2,NM1
C DETERMINE COEFFICIENTS OF NEIGHBORING POINTS

DO 21 1=2,MM1
AC I) = -UC1-1,J)/C2-C1 
CCI) = UCI+l,J)/C2-C1 

21 CONTINUE
C DETERMINE VALUE OF KNOWN QUANTITY 'DC I) '

DO 31 1=1,M
DC I) = C3*P0LDCI,J) + C-VCI,J+1)*P0LDCI,J + 1)+VCI,J-1)*

1 POLDCI,J-l))/C2+C1*CP0LDCI,J+1)-2.*P0LD(I,J)+
1 POLDCI,J-l))

31 CONTINUE
C CALL SUBROUTINE TRIDX TO SOLVE TRIDIAGONAL MATRIX

CALL TRIDXCQS,A,C,D,M,BETA,GAMMA)
C ASSIGN VALUES OF SINGLE-INDEX ARRAY TO TWO-DIMENSIONAL 
C ARRAY

DO 41 1=2,MM1
PSCI,J) - QS CI>

41 CONTINUE
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C SET NEW TEMPERATURES AT THE WALLS, PS(1,J)'
C AND 'PSCMfJ)r

PS(lrJ) ■ PS < 2, J )
PS(M » J) * PS(MM1,J )

11 CONTINUE
RETURN
END

SUBROUTINE TRIDX(Q ,A ,C ,D ,M ,BETA,GAMMA)
PROGRAM TRIDX.FOR
SOLUTION OF A TRIDIAGONAL MATRIX IN 'G(M ) ' , GIVEN 'A <M ) ', 
'B', 'C(M)', AND 'D(M)'

DIMENSION Q(M) ,ACM),C (M >,D (M >,BETA(M >,GAMMA(M) 
DOUBLE PRECISION G ,A ,C ,D ,BETA,GAMMA 
COMMON /BLK/ B,MM1,NM1,C1,C2,C3

C DETERMINE RECURSION CONSTANTS 'BETA ' AND 'GAMMA'
BETA(2) = B+A(2)
GAMMA(2) = D(2)/BETA(2)
DO 10 K=3,M-2

BETA(K) = B-(A(K)*C(K-1)/BETA(K-l))
GAMMA(K) = <D(K)-A(K)*GAMMA(K-1))/BETA(K)

10 CONTINUE
BETA(MMl) = B+C(MM1>-(A(MMl)«C(M-2)/BETA(M-2))
G AMMA(MM 1 ) = <D(MM1 >-A(MM1 )«GAMMA < M-2 >>/BETA(MM1)

C DETERMINE 'Q(K)'
G (MM 1) = GAMMA(MM1 >
DO 20 K K =2,M-2 

K = M-KK
G(K) = GAMMA(K)-C(K)*G(K + l)/BETA < K )

20 CONTINUE
RETURN
END
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SUBROUTINE IMPY<PS,P,U,V,M,N,A,C,D,Q,NM2,BETA,GAMMA)C— ------------------------------ -------------------------------- ------
C PROGRAM IMPY.FOR
C Y-IMPLICIT HALF OF ADI SOLUTION, DETERMINES TEMPERATURES 
C 'P<I,J> ' AT NEW TIME STEP BY SOLVING FOR THE 'A<I>', 'B',
C 'C(I)', AND 'D(I)' COEFFICIENTS OF A TRIDIAGONAL MATRIX
C-------------------------------------------------------------------------

DIMENSION PS<M,N),P(M,N),Q(N),U<M,N>,V(M,N),A(N),C(N),D(N) DIMENSION BETA(N )» GAMMA < N >DOUBLE PRECISION PS,P,G ,A ,C ,D ,BETA,GAMMA 
DÜUELV  PR EC 131 ON 0‘,
COMMON /BLK/ B ,MM1,NMI,CI,C2.C3

C SET TEMPERATURE AT THE ENTRANCE AND EXIT
DO 02 I=1,M

P< I , 1 ) = PS(I,1 )
P( I r N ) = PS < I r N )

02 CONTINUE
C FOR EACH 'I', DETERMINE THE NEW TEMPERATURES 'P<I,J) '
C FOR 1=1 THROUGH I-M

DO 12 1=2,MM1
C DETERMINE COEFFICIENTS OF NEIGHBORING POINTS

DO 22 J = 2,NM1
A (J) » -V(I,J-l)/C2-C1 
C(J) = V(I,J+1)/C2-C1

C DETERMINE VALUE OF KNOWN QUANTITY 'D(J)'
D (J > = C3*PS(I,J) + (-U(I + l,J)*PS(I + l,J)+U(I-l,J)*PS(I-l,J) 

1 )/C2+Cl*(PS(I+l,J)-2.*PS(I,J)+PS(1-1,J ))
22 CONTINUE

D ( 2) = D(2)-A(2)*PS(I, 1 )
D(NM1) » D (NMI)-C(NM1)*PS(I » N )
A (2) * O.
C(NM1> = 0.

C CALL SUBROUTINE TRIDY TO SOLVE TRIDIAGAONAL MATRIX
CALL TRIDY(G»A,C,D»N,BETA,GAMMA)

C ASSIGN VALUES OF SINGLE-INDEX ARRAY TO TWO-DIMENSIONAL 
C ARRAY

DO 32 J*2,NM1 
P(I,J ) > G(J)

32 CONTINUE
12 CONTINUE
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C SET NEW TEMPERATURES AT THE WALLS, 'P<1,J>'
C AND 'P<M,J>'

DO 42 J«2,NM1
PCI , J) « P(2,J >

42 P(M » J) ■ P(MMlrJ)
RETURN
END

SUBROUTINE TRIDY(Q ,A ,C ,D ,N ,BETA,GAMMA)
PROGRAM TRIDY.FOR
SOLUTION OF A TRIDIAGONAL MATRIX IN 'G(N) ' , GIVEN 'A<N>', 
'B ' , AND 'C(N> ', 'D(N) '

DIMENSION Q(N) ,A (N ),C (N >,D (N ),BETA < N >,GAMMA(N> 
DOUBLE PRECISION Q ,A ,C ,D ,BETA,GAMMA 
COMMON /BLK/ B ,MM1,NM1,C 1,C2,C3

C DETERMINE RECURSION CONSTANTS 'BETA ‘ AND 'GAMMA'
BETA(2) = B
GAMMA < 2) = D (2)/BETA(2)
DO 10 K=3,NM1

BETA(K) - B-(A(K)*C(K-1)ZBETACK-l)) 
GAMMACK) * (D(K)-A(K)*GAMMA(K-l))/BETA(K) 

10 CONTINUE
C DETERMINE 'Q(K)'

GCNMl) - GAMMA(NM1)
DO 20 KK = 2,N-2 

K « N-KK
G (K ) • GAMMACK)-C(K)*G(K + 1 )/BETACK) 

20 CONTINUE
RETURN
END



n n 
n n 

n 
n 

n 
n n

-3155

.3 Tracer Program: Explicit Upwind Differencing

c---------------------------------------------------------------
C MAIN PROGRAM T2UP.F0R
C TRACER RESPONSE SOLUTION AT STEADY STATE
C EXPLICIT UPWIND DIFFERENCING SOLUTION
C TWO-DIMENSIONAL RECTANGULAR COORDINATES
C % 'UUrJ)' VELOCITY IN THE X-DIRECTION
C #V(I,J>' VELOCITY IN THE Y-DIRECTION
C 'ECONC(I » J)' DIMENSIONLESS CONCENTRATION
C VELOCITY COMPONENTS U. V FROM FLOW EXECUTION 
C DATA FILE F0R03.DAT
C T2UP EXECUTION REQUIRES THE FOLLOWING SUBROUTINES:
C SET2.F0R
C UP2.F0R
C----------------------------------------------------------------------

'M ' IS THE X-DIRECTION INDEX
'N ' IS THE Y-DIRECTION INDEX

PARAMETER M=20 
PARAMETER N=60

'K ' IS THE GREATER OF 'M' AND 'N'
PARAMETER K=BO 
PARAMETER LC=15

'LC ' IS THE NUMBER OF CONTOURS SPECIFIED
DIMENSION NCQNTîtei
DIMENSION U<M,N),V(M,N)»ECONC(M » N ),POLD(M,N),PS(M,N) , 
1P(M,N),A(K),C<K),D(K),Q(K),QS(K),BETA(K),GAMMA(K )
D I MENSION V1(M,N),V2(M,N),V3(M,N),U1(M,N),U2(M,N),U3(M,N) 
DOUBLE PRECISION U,V,ECONC,POLD,PS,P,A,C,D,Q,QS,BETA,GAMMA 
DOUBLE PRECISION VI,V2,V3,U1,U2,U3 
DOUBLE PRECISION UF,UFA,UB,UBA,VF,VFA,VB,VBA 
COMMON /BLK/ B ,MMI,NM1,C1,C2,C3
DATA NC0NT/30,40,50,70,90,120,140,IBO,180,200,210,1230,230,270,300/
LL - 21

'XLE IS THE LEWIS NUMBER 
'EPS ' IS THE POROSITY 
'DT' IS THE TIME INCREMENT
'NTRACE' SPECIFIES THE DURATION OF THE INPUT 
PULSE IN TIME INCREMENTS

XLE « 40.0 
EPS » 0.35 
DT = 0.0002 
NTRACE = 10 
NT » NTRACE+1

C 'MAXSTP' IS THE MAXIMUM NUMBER OF TIME INCREMENTS
WRITE<4,100)

100 F0RMAT(5X,'ENTER MAXSTP',/)
READ(4,110>MAXSTP 

110 FORMAT!I)
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C 'H' IS THE SPACE INCREMENT
MM = M 
NN-N
WRITE(4 r120)MM » NN 

120 F0RMAT(5X,'M, THE X-DIRECTION INDEX »',I3,5X,
1'N, THE Y-DIRECTION INDEX = ,13/)
WRI TE(4,130)DT 

130 FORMAT(5X,#DT-',E13.6/)
MM1=M-1 
MM2=M-2 
NMI=N-1 
NM2=N-2 
H=1./(20.-1. )
RAT 10*MM1/NMI

C 'Cl', 'C2', 'C3 ' , AND 'B' ARE CONSTANTS
Cl ■ DT/(2.*EP6*H)C2 = DT/(EPS*XLE*H*H)
C3 = 2.»EPS/DT 
B - C3+2.*C1

C READ VELOCITY COMPONENTS U, V FROM DATA FILE
C GENERATED BY FLOW EXECUTION

DO 10 J■1 » N
READ(3,140)(U<I,J),1=1,M>

10 CONTINUE
DO 12 J = 1,N

READ(3,140)(V(I,J),1=1,M)
12 CONTINUE
140 FORMAT(2X,5E19.12)
C SUBROUTINE SET2 CALCULATES THE UPWIND 
C DIFFERENCING VELOCITIES

CALL SET2(U,V,M,N»U1,U2,U3,VI,V2,V3,
1UF,UFA,UB,USA,VF,VFA,VB,VBA)
READ(3,150)RA,REPR,MM,NN,FT,NDATE 

150 FORMAT(2X,2E19.12,2I3,E19.12,IS)
WRI TE < 4,1 SO)RA,REPR,MM,NN,FT,NDATE 

ISO FORMAT<5X, 'FROM FLOW EXECUTION I ' ,/SX, 'RA= ' »E/9X, 'REPR=',E/9X,
1 'M- ' ,I/9X, 'N=',I/9X, 'TIME=',E/9X, 'DATE ',!/)

C 'DTAU' THE INCREMENT FOR DIMENSIONLESS RESIDENCE TIME
T • 0.0
DTAU = <DT#REPR/EPS>*((19.0/(N-l.0)>**2.0)

C 'EINIT' THE INITIAL DIMENSIONLESS CONCENTRATION
EINIT « (EPS/(REPR*DT*NTRACE))*<((N-I.0)/19.0)**2.0)
WRITE(4,900)EINIT 

900 FORMAT(5X,' EINIT* ,E/)
DO 14 1*1,M

ECONC(I,N) - EINIT 
14 CONTINUE
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C 'NSTEP * IS THE STEP NUMBERC TERMINATE COMPUTATION IF NSTEP EXCEEDS MAXSTP
C INCREMENT TIME STEP BY ONE
1 NSTEP = NSTEP*1IF(N8TEP.GT.MAXSTP) GO TO 3 

T « T+DTAUIF(NSTEP .NE. NT) GO TO 22
DO 20 r*7TN-

ECONC( I »N ) «= 0.0 
20 CONTINUE
C DETERMINE CONCENTRATION FIELD AT THE NEW TIME STEP WITH
C SUBROUTINE UP2

22 DO 24 1 = 1 ,M
DO 24 J=1,N

POLDCI,J) = ECONC(I,J>
24 CONTINUE

CALL UP2CP0LD,ECONC,U1,U2,U3,V1,V2,V3.M ,N )
C DETERMINE AREA UNDER THE RTD CURVE

NETOT * NETOT+1 
IFCNETOT .EG. 1) GO TO 30
GO TO 1

30 NETOT « 0
ETOT = O.
DO 32 1*1,M

ETOT = ETOT *ECONC(1,1)
32 CONTINUE

EAVG * ETOT/M
AREA = AREA+(DTAU*EAVG)

C CREATE FOR12.DAT FOR AVERAGE EXIT CONCENTRATION, TIME
WRITEC12,300)T,EAVG,AREA 

300 FORMAT(2X,3E19.12)
NPLOT = NPLOT ♦ 1 
IF(NPLOT .NE. 10) GO TO 1 
NPLOT = O
WRI TE C 4,310 INSTEP,T ,EAVG 

310 FORMAT(2X, 'NSTEP*',15,2X, 'TI ME*'.El3.6.2X. 'EAVG*' ,El3.6)
C CREATE DATA FILES FOR TRACER CONCENTRATION CONTOUR 
C PLOTS
C DO 44 L*1,LC
C IF (NSTEP .EG. NCONT(L)) GO TO 46
C4 4 CONTINUE

GO TO 2 
46 WRITE(4,420)
420 FORMAT(1OX,'CONTOUR',/>
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42 
4 30

440

C
2
700
710

3
BOO

810

U » LL+1 
DO 42 J=1rN 

J'J ■ N+l-J
WRI TE(LL » 430)(ECONC(I,JJ),I"1,M)

CONTINUE
FORMAT(1X » 5F12.6)
WRITE(LL.160 > RA r REPR * MM.NN r FT,NDATE 
WRITE(LL » 440)T
FORMAT<5X,'FLOW TIME FOR TRACER EXECUTION»'»E>
GO TO 2

OPTIONAL EXIT
WRITE(4r700)
FORMAT(1 OX, 'TYPE 2 TO ESCAPE PROGRAM EXECUTION'./)
READ(4,710)NEXIT
FORMAT(I)
IF(NEXIT .EG. 2) GO TO 3 
GO TO 1
WRITE<12,600)
FORMAT(5X,'T.EAVG DATA')
WRITEt12,160)RA,RE PR,MM,NN,FT,NDATE 
AREA ■ AREA-(DTAU+EAVG/2.0 >
WRITE(4,810)AREA
FORMAT(2X, 'AREA UNDER CURVE» ' ,E)
END
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SUBROUTINE 6ET2<U ,VrM,N,U1.U2,U3,Vt,V2,V3, 
1UF,UFA r UB r UBA,VF,VFA,VB.VBA)

PROGRAM SET2.F0R
CALCULATES THE UPWIND DIFFERENCING VELOCITIES 
EXPLICIT SOLUTION

DIMENSION U(M.N).V(H.N)»U1(M,N>.U2<h,N>.U3(M ,N ),VI(M,N>,V2(M ,N ), 
1V3CM,N>
DOUBLE PRECISION U.V.UI.U2.U3.VI.V2.V3 
DOUBLE PRECISION UF,UFA,UB.UBA,,VF,VFA.VB,VBA 
COMMON ZBLK/ B.MMI.NMI.CI.C2.C3
DO 10 J*2,NM1 
DO 20 1-2,MM1
UF • (U<1+1,J>+U(I.J>>/2.0 
UFA = ABS(UF)
UB « <U(1-1,J)+U(I.J)>/2.0 UBA » ABS(UB)
VF-
VFA = ABS(VF)
VB = < V(I,J-I)+V(I,J))/2.0 
VBA = ABS(VB)
Ul(IrJ) » (UF—UFA > *C1 
U2CI.J) = (UF+UFA-UB+UBA)*C1 
U3(I,J) = (UB+UBA> *C1
Vl(I.J) ■ (VF-VFA)»C1 
V2(I.J) * (VF+VFA-VB+VBA)*C1 
V3(I,J ) = (VB+V6A)*C1

20 CONTINUE
10 CONTINUE

RETURN
END
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SUBROUTINE UPZ(POLD,ECONC,U1,U2,U3,VI,V2,V3,M,N)
C---------------------------------- --------------------------
C PROGRAM UP2.FOR
C EXPLICIT UPWIND DIFFERENCING SOLUTION FOR TRACER 
C CONCENTRATION AT THE NEW TIME STEP
C-----------------------------------------------------------

DIMENSION POLD(M ,N >,ECONC<M ,N ),U1<M,N),U2(M,N),U3<M,N) 
DIMENSION VI(M,N),V2(M,N),V3(M,N)
DOUBLE PRECISION POLD,ECONC
DOUBLE PRECISION U1,U2.U3,VI,V2,V3,PI,P2,P4 
COMMON /BLK/ B,MM1,NMI,C1,C2,C3
DO 10 1=1,M

ECONC(I.N ) • POLD(I,N ) 
10 CONTINUE

DO 20 1=2,MM1 
DO 20 J=2,NM1

PI = U1(I,J)*POLD <I♦1,J)+U2(I,J)*POLD(I,J)-U3(I,J)«POLD(I-1,J)
P2 = VI(I,J >»POLD<I,J+l)+V2(I,J)«POLD(I,J)-V3(I,J)«POLD CI,J-l )
P4 = P0LD(I+1,J>+P0LD(I-1,J)+P0LD(I,J+1>+P0LD(I,J-1)- 

1 4.0*P0LD(I,J)
ECONC(I,J) = POLD <I»J)-Pl-P2+(C2*P4)

20 CONTINUEDO 30 J-2.NM1
ECONC(1,J) « ECONC(2,J ) 
ECONC(M ,J) = ECONC(MM1,J) 

30 CONTINUE
DO 40 1=1,M

ECONC(1,1) - ECONC(1,2) 
40 CONTINUE

RETURN
END
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.4 Tracer Problem: ADI

c—  ------------------------------------------------------------------------------------------
C MAIN PROGRAM T2.F0R
C TRACER RESPONSE SOLUTION AT STEADY STATE 
C ALTERNATING-DIRECTION IMPLICIT SOLUTION
C TWO-DIMENSIONAL RECTANGULAR COORDINATES
C 'U(I.J>' VELOCITY IN THE X-DIRECTION
C 'V<I,J> # VELOCITY IN THE Y-DIRECTION
C 'ECONC<I.J»' DIMENSIONLESS CONCENTRATION 
C VELOCITY COMPONENTS U, V FROM FLOW EXECUTION 
C DATA FILE F0R03.DAT
C T2 EXECUTION REQUIRES THE FOLLOWING SUBROUTINES:
C IMPXT.FOR
C TRIDX.FOR
C IMPYT.FOR
C TRIDYT.FORC-------------------------------------- --------------------- ----------
C 'M' IS THE X-DIRECTION INDEX
C 'N ' IS THE Y-DIRECTION INDEX

PARAMETER M=20 
PARAMETER N«20

C 'K ' IS THE GREATER OF 'M' AND 'N'
PARAMETER K-20 
PARAMETER LC-15

C 'LC' IS THE NUMBER OF CONTOURS SPECIFIED
DIMENSION NCONT(LC >
DIMENSION U(M,N),V(M,N),ECONC(M,N),POLD(M,N>,PS(M.N). 
1P(M,N>,A<K>,C(K).D(K>,Q(K),0S(K>.BETA(K >,GAMMA(K>
DOUBLE PRECISION U,V,ECONC,POLD,PS,P,A,C,D,Q,QS,BETA,GAMMA 
COMMON /BLK/ B.MMI,NM1,C1,C2,C3
DATA NC0NT/30,40,50,70,90,120,140,ISO,180,200,210, 
1230,250,270,300/
LL = 21

C 'XLE IS THE LEWIS NUMBER 
C 'EPS ' IS THE POROSITY 
C 'DT' IS THE TIME INCREMENT
C 'NTRACE ' SPECIFIES THE DURATION OF THE INPUT
C PULSE IN TIME INCREMENTS

XLE— -40-0- 
EPS - 0.35 
DT » 0.0001 
NTRACE - 1 
NT « NTRACE+1

C 'MAXSTP' IS THE MAXIMUM NUMBER OF TIME STEPS
WRITEt 4,100 >

100 FORMAT(5X,'ENTER MAXSTP',/)
READ(4,11OIMAXSTP 

110 FORMAT(I)
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C 'H' IS THE SPACE INCREMENT
MM«M
NN-N
WRITE(4,120>MM,NN 

120 FORMAT(5X, 'h, THE X-DIRECTION INDEX =',I3,5X,
1'N, THE Y-DIRECTION INDEX -',13/)
WRITE(4,130)DT 

130 FORMAT<5X, 'DT- ',E13.6/)
MM1-M-1 
MM2-M-2 
NMI-N-l 
NM2-N-2 
H=1./(20.-1.)
RATI0-MM1/NMI

C 'Cl', 'CZ', 'C3 ' , AND 'B' ARE CONSTANTS
Cl - 1./(XLE*H*H)
C2 - 2.*H 
C3 = 2.*EPS/DT 
B = C3+2.*C1

C READ VELOCITY COMPONENTS U, V FROM DATA FILE
C GENERATED BY FLOW EXECUTION

DO 10 J = 1,N
READ(3,140)(U(I,J),1-1,M)

10 CONTINUE
DO 12 J = 1 , N

READ(3,140)(V(I,J),1=1,M)
12 CONTINUE
140 FORMAT(2X,5E19.12)

READ(3,150)RA,REPR,MM,NN,FT,NDATE 
150 FORMAT(2X,2E18.12,2I3,E19.12,26)

WRITE < 4,1SO)RA,REPR,MM,NN,FT,NDATE 160 FORMAT(5X, 'FROM FLOW EXECUTION ! '»/SX, 'RA= ' ,E/9X, 'REPR-',E/9X,
1 'M-' , I/9X, 'N=' , I/9X, ' T I ME = ' ,E/9X ..'DALE ' . 1/ >

C 'DTAU' THE INCREMENT FOR DIMENSIONLESS RESIDENCE TIME
T « 0.0
DTAU - (DT*REPR/EPS)*<(19.0/(N-1.0))**2.0>

C 'EINIT' THE INITIAL DIMENSIONLESS CONCENTRATION
EINIT = <EPS/(REPR»DT*NTRACE>)#(((N-l.0>/19.0)»*2.O >
WRITE(4,900)EINIT 

900 FORMAT(5X,' EINIT-',E/)
DO 14 I » 1,M

ECONC(I,N> - EINIT 
14 CONTINUE ,
C 'NSTEP' IS THE STEP NUMBER
C TERMINATE COMPUTATION IF NSTEP EXCEEDS MAXSTP
C INCREMENT TIME STEP BY ONE
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20
C
C
22

24

C

30

32

C

300

310
C
C

44
46
420

42

NSTEP ■ NSTEP+1
IF(NSTEP.GT.MAXSTP) GO TO 3
T - T+DTAU
IF(NSTEP .NE. NT) GO TO 22
DO 20 1=1,M

ECONC(Ir N ) - 0.0 
CONTINUE

DETERMINE CONCENTRATION FIELD AT THE NEW TIME STEP WITH 
SUBROUTINES IMPXr IMPY, TRIDX, AND TRIDY

DO 24 1-1,M
DO 24 J=1,N

POLD(I,J) » ECONC(I,J)
CONTINUE
CALL IMPX(POLD,PS,U.V,M,N,A,C,D,OS,BETA,GAMMA)
CALL IMPY(PS r ECONC,U ,V ,M ,N ,A ,C ,D ,d ,NM2,BETA,GAMMA>

DETERMINE AREA UNDER THE RTD CURVE
NETOT = NETOT+1
IF(NETOT .EG. 1) GO TO 30
GO TO 1
NETOT « O 
ETOT « 0.
DO 32 I«1»METOT = ETOT+ECONC(1,1)
CONTINUE
EAVG « ETOT/M
AREA - AREA+(DTAU*EAVG)

CREATE F0R12.DAT FOR AVERAGE EXIT CONCENTRATION, TIME
WRITE(12,300)T ,EAVG 
FORMAT(2X,2E13.12)

* NPLOT « NPLOT + 1
IF < NPLOT .NE. 10) GO TO l 
NPLOT * 0
WRITE(4,310)NSTEP,T,EAVG
FORMAT<2X,'NSTEP*',I5,2X,'TIME=',E13.6,2X,'EAVG=',E13.S)

CREATE DATA FILES FOR TRACER CONCENTRATION CONTOUR 
PLOTS

DO 44 L-l,LC
IF (NSTEP .EG. NCONT(L)) GO TO 46 CONTINUE 

GO TO 2 
WRITE(4,420)
FORMAT(10X,'CONTOUR',/)
LL » LL+1 
DO 42 J*1 » N 

JJ * N+l-J
WRITE(LL,430)(ECONC(I,JJ),1*1,M)

CONTINUE
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430

440

C
2
700
710

3
800

810

FORMATC1X,5F12.6>
WRITE(LL,I60)RA,REPR.HM,NN,FT,NDATE 
NRITE<LL,440)T
FORMAT(5X,'FLOW TIME FOR TRACER EXECUTION-',E)
GO TO 2

OPTIONAL EXIT
WRITE(4,700)
FORMAT!10X,'TYPE 2 TO ESCAPE PROGRAM EXECUTION',/) 
READ(4,710)NEXIT 
FORMAT(I)
IF(NEXIT .EG. 2) GO TO 3 
GO TO 1 
WRITE!12,800)
FORMAT !5X » 'T » EAMG DATA')
WRITE!12,160 ) R A , REPR,MM,NN,FT,NDATE
AREA » AREA-!DTAU*EAVG/2.0)
WRITE!4,810)AREA
F0RMAT!2X, AREA UNDER CURVE- ',E >
END
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SUBROUTINE IMPX<POLD,P6,U ,V ,M ,N,A,CrD ,OSrBETA,GAMMA>C---------------------------------- ----------------------------------
C PROGRAM IMPXT.FOR
C X-IMPLICIT HALF OF ADI SOLUTION, DETERMINES CONCENTRATIONS
C rPS(I,J)' AT TIME 'T+(1/2)DT' BY SOLVING FOR THE 'A(I)',
C 'B', 'C<D', AND 'D(I)' COEFFICIENTS OF A TRIDIAGONAL MATRIXC--------------------------------------------------------------------

DIMENSION POLD(M » N > » PS(M « N ),OS(M),UCM,N),V<M,N>,A(M>,
1C (M >,D(M>
DIMENSION BET A (M ),GAMMA(M )
DOUBLE PRECISION POLD,PS,OS,A,C,D,BETA,GAMMA
DOUBLE PRECISION U,V
COMMON ZBLK/ B ,MM1,NMI,Cl,C2,C3

C SET NEW CONCENTRATIONS AT THE ENTRANCE, 'PS(I,N>'
DO 01 I»1,M

PS(I,N)-POLD(I,N)
01 CONTINUE
C FOR EACH 'J', DETERMINE THE NEW CONCENTRATIONS PS(I,J)'
C FOR 1=1 THROUGH I-M

DO 11 J=2,NM1
C DETERMINE COEFFICIENTS/OF NEIGHBORING POINTS

DO 21 1=2,MM1
A (I)=-U(1-1,J)/C2-C1 

21 C(I)=U(I+1,J)/C2-C1
C DETERMINE VALUE OF KNOWN QUANTITY 'D(I)'

DO 31 1=1,M
D (I)=C3*P0LD(I,J) + (-V(I,J + l)*POLD(I,J+1>♦V <I,J-1)*

1 POLD(I,J-l))/C2+Cl*(P0LD(I,J+l)-2.*P0LD(I,J)+
1 POLD<I,J-l) )

31 CONTINUE
C CALL SUBROUTINE TRIDX TO SOLVE TRIDIAGONAL MATRIX

CALL TRIDX(QS,A ,C ,D ,M ,BET A,GAMMA)
C ASSIGN VALUES OF SINGLE-INDEX ARRAY TO TWO-DIMENSIONAL 
C ARRAY

DO 41 1=2,MM1 
PS(I,J)«QS(I>

41 CONTINUE
C SET NEW CONCENTRATIONS AT THE WALLS. #PS<1,J)#
C AND PS(M,J)'

PS<I.J)-PS(2,J)
PS(M,J>=PS(MM1,J)

11 CONTINUE
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C SET NEW CONCENTRATIONS AT THE EXIT, 'PS<1,J> '
DO 31 I-l.M

PS(I » 1> - PS(1,2 >
51 CONTINUE

RETURN
END

SUBROUTINE TRIDX(Q,A,C,D,M,BETA,GAMMA)
PROGRAM TRIDX.FOR
SOLUTION OF A TRIDIAGONAL MATRIX IN 'Q(M)', GIVEN 'A(M)', 
'B', 'C(M)', AND 'D(M)'

DIMENSION Q(M),A(M),C(M),D(M),BETA(M>.GAMMA(M) 
DOUBLE PRECISION Q,A,C.D.BETA,GAMMA 
COMMON /BLK/ B.MMl,NM1,C1,C2,C3

C DETERMINE RECURSION CONSTANTS 'BETA' AND 'GAMMA '
BET A (2) = B+A(2)
GAMMA(2 > = D(2 >/BETA(2)
DO 10 K*3,M-2

BETA(K) = B-(A(K)«C(K-1)/BETA(K-1))
GAMMACK) = <D(K >-A(K >*GAMMA(K-1 ) )/BETACK >

10 CONTINUE
BETA C MM1) = B+C C MM1 ) — (ACMMl >*C(M-2)/BETAC M-2))
GAMMA(MM1> = (D (MM1)-ACMM1)«GAMMACM~2>)/BETACMMl)

C DETERMINE '0 C K ) '
QCMM1) = GAMMACMM 1)
DO 20 KK=2,M-2 

K * M-KK
0 CK) = GAMMACK)-CCK)*QCK + l)/BETACK)

20 CONTINUE
RETURN
END
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SUBROUTINE IMPY(PS,P,U,V,M,N,A,C,D,G,NM2,BETAr GAMMA >C-----------------------------------------------------------------------
C PROGRAM IMPYT.FOR
C Y-IMPLICIT HALF OF ADI SOLUTION, DETERMINES CONCENTRATIONS 
C 'P<I,J>' AT NEW TIME STEP BY SOLVING FOR THE 'A(I)', 'B',
C 'C<I> ', AND 'D(I) ' COEFFICIENTS OF A TRIDIAGONAL MATRIX 
C-------------------------------------------------------- ----------------

DIMENSION PS(M,N),P(M,N>,O (N ),U(M,N>,V (M ,N ),A(N),C <N ),D(N> 
DIMENSION BET A (N ),GAMMA(N)
DOUBLE PRECISION PS,P ,G ,A.C,D ,BETA.GAMMA
DOUBLE PRECISION U,V
COMMON /BLK/ B.MMI,NM1,C1,C2,C3

C SET NEW CONCENTRATIONS AT THE ENTRANCE, 'P(I,N)'
DO 02 1-1,M

P(I,N)-PS(I,N)
02 CONTINUE
C FOR EACH 'I'r DETERMINE THE NEW CONCENTRATIONS ' P <I,J > z
C FOR 1=1 THROUGH I=M

DO 12 1=2,MM1
C DETERMINE COEFFICIENTS OF NEIGHBORING POINTS .

DO 22 J=2,NM1
A<J)«-V(I,J-l>/C2-Cl 
C<J)-V(I,J+l)/C2-Cl

C DETERMINE VALUE OF KNOWN QUANTITY 'D(J)'
D (J > =C3*PS <I,J> + (-U(1 + 1,J)*PS(I + 1,J) + U(I-1,J>*PS(I-1,J> 

1 >/C2+Cl*(PSCI+l,J)-2.*PS(I,J)+PS(I-1.J))22 CONTINUE
D (NM1> = D (NMI)—C (NM1)*PS(I,N)

C CALL SUBROUTINE TRIDY TO SOLVE TRIDIAGAONAL MATRIX
CALL TRIDY(Q ,A ,C ,D ,N ,BETA,GAMMA)

C ASSIGN VALUES OF SINGLE-INDEX ARRAY TO TWO-DIMENSIONALC ARRAY
DO 32 J=2,NM1 

P(I,J)=Q(J)
32 CONTINUE
12 CONTINUE
C SET NEW CONCENTRATIONS AT THE WALLS. 'P(f.J)' 
C AND 'P(M,J> #

DO 42 J-2.NM1 
P(1,J)=P(2»J>
P(M,J)=P(MM1,J)

42 CONTINUE
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C SET NEW CONCENTRATIONS AT THE EXIT, 'P(I,l> '
00 52 1=1,M

P(I,1 ) » PCI,2)
52 CONTINUE

RETURN
END

6UBR0UTINE TRIDY(Q ,A ,C ,D ,N ,BETA,GAMMA>
PROGRAM TRIDYT.FOR
SOLUTION OF A TRIDIAGONAL MATRIX IN 'Q(N)', GIVEN 'A(N)', 
'B', 'C(N)', AND 'D(N)'

DJMENSJON- D (J U -, A I NJ .,.C-(.N4 N-L-,BEXA t N.) ^GAMMAjLNJ
DOUBLE PRECISION Q ,A ,C ,D ,BETA,GAMMA 
COMMON /BLK/ BrMMl,NM1,C1,C2,C3

C DETERMINE RECURSION CONSTANTS 'BETA ' AND 'GAMMA '
BET A (2) = B+A(2)
GAMMA(2) = D (2)/BETA(2)
DO 10 K =3,NM1

BETACK > = B-(A (K )*C(K-l)/BETA C K-1)) 
GAMMACK) - <DCK)-ACK>*GAMMACK-1))/BETACK) 

10 CONTINUE
C DETERMINE 'G C K ) '

GCNMl) = GAMMA(NM1>
DO 20 KK *2,N-2 

K = N-KK
G(K > = GAMMACK)-CCK)*QCK + l)/BETACK) 

20 CONTINUE
RETURN
END


