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ABSTRACT

This research is the study of the operating parameters of a
pilot-plant-size spouted-bed 0il shale retort and the theoretical
correlation of them. The difficulty in obtaining accurate measure-
ment of the small oil yields because of 0i1 loss in the recovery
system necessitates the use of the air required for combustion as
the check between the theoretical correlation and the experimental
results. The retort was operated successfully at temperatures bhe-
tween 995 and 1200 °F and at shale feed rates of 10 to 20 pounds
per hour with agreement between experimental and theoretical re-
sults within experimental error. No attempt was made to correlate
operating conditions and the physical operation of the spouting

effect.
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INTRODUCTION

Spouting is a new technique for contacting fluids with
grarular solids. The spouted bed can be described as a combination
of a difute fluid phase and a coexistent moving, expanded bed (1).
Gas enters through an opening at the apex ¢f a conical inlet
(Figure 1); this entrance is so abrupt that the gas has no chance
for lateral distribution over the total cross section of the shell.
This effect forms a central channel of a dilute fluid phase in which
the solids are entrained upward. The solids enter the channel
mainly fram the bottom, but also laterally along the length of the
channel. The solids concentration in the charnnel increases with
height, wnile the outline of the channel becomes less distinct.

At the upper end of the channel the solids spill over into the
annulus surrounding the central channel. The annulus can be de-
scribed as an expanded bed in which the particles maintain their
relative position as they move downward. The coexistence of these
two phases produces a solids flow pattern where the solids are en-
trained upward in the central channel and descend by gravity in the
densar annulus.

Preliminary work on the use of the spouted bed indicated the
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T-1194

possibility of its use as an oil shale retort (2). Before major
design changes in the reactor vessel and suppori equipment were
initiated, it was desired to obtain a correlation of the operating
parameters and the development of a mathematical model to predict
responses to changes in operating parameters and also to determine
areas for possible improvement of the support equipment. This
thesis is\the study of these parameters and the development of such
a model from an analysis of publications pertaining to the char-

acteristic reactions involved in the retorting operation.
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THEORY

It was necessary to study the kinetics and obtain accurate
thermodynamic data for reactions occurring in the system and include
these_with the sensible heats of the product and feed stream to form
a mathematical expression for the heat and mass balance around the

reactor.

OIL SHALE REACTIONS: 011 shale is a compact sedimentary rock
containing organic and inorganic substituents. The organic portion
of the shale can be divided into two parts: bitumen and kerogen.
The bitumen is considered as the benzene soluble organic naturally
present in the raw shale. Kerogen, comprising the remaining portion
of the organic matter in the shale, can, by pyrolysis, be converted
to a soluble organic, similar to bitumen, U4ork dene by Hubbard and
Robinson (3) shows the conversion to the soluble organic to be a

first-order process where the rate follows an Arrhenius rate law.
AC = Co(l - e"kt) (1)

Where AC is the change in kerogen content of the shale, Co is the

initial concentration of kerogen, t is time of pyrolysis, and k is
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[Sa]

the Arrhenius rate constant described in the following equation:

log k x 102 = -5549 + 9.16 (2)

T
The above equation, fob temperatures above 818 F, was used because
the residence times of particles at temperatures below this are
negligible. As the soluble organic is further heated, it is driven
from the shale as a vapor, leaving behind a non-volatile residual
carbon. The residual carbon is from 2-weight percent for 28-gal-
per-ton shale to 4-weight percent for 75-gal-per-ton o0il shale (3).
The inorganic material can be classified into two categories:
mineral carbonates and other minerals, which are mostly of the siii-
cate family. The percentages of these minerals vary with shale
origins; a typical analysis is shown in Table 1. Experimental work
(4), yielding data on the decomposition of the carbonates, has shown
them both to be first order with respect to the initial concentration
of calcite and dolomite. Rate constants for each species were also
found to follow an Arrhenius function. Although the decomposition
is complex, a value of 57,000 Btu per mole of carbon dioxide
liberated was determined by Dannenburgh and Matzick (5) for the
decomposition of the carbonates. They also found that the reactions
of the remaining inorganics did not affect heat balances at operation

conditions.



TABLE 1- Mineral Composition of Green River 0i1 Shale (5)

Mineral
Dolomite
Calcite

Plagioclase
ITlite
Quartz
Analcite
Orthoclase

Iron

Fyrite

Formula

(CaMg)CO3

CaCO3

(NaxCay)A1Si308*

K,0 . 3A1203 .

2 68102.H2O

5102

NaA151206.H20

KA]S1308

Fe

FeS

* x and y indicate varying percentages

Weight
Percent

33
20
12

1

10
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MATHEMATICAL-PROCESS DESCRIPTION: Because this work was
conducted to determine the operating parameters of the system and their
efifect on the system, a mathematical model was developed to analyze
the experimental results and to predict responses to changes of
these parameters.

The mathematical model was developed from a heat- and mass-
balance around the reactor. For analysis, the reactor was considered
as a stirred-tank reactor. For determining the kerogen and carbonate
decompositions from the individual rate equations, an average resi-
dence time was found by dividing the mass volume by the raw shale
flow rate. Although there were small temperature gradients, 20 OF
in most cases, the reactor was assumed to be isothermal, with the
outlet temperature used as the reactor temperature. Although this
assumption produced a slight error in the rate constant for the
carbonate decomposition, it gave correct values for the sensible
heat of the products which had a much larger effect on the heat
balance than the carbonate decomposition. The kerogen was decomposed
completely during the first 10 minutes of the residence time and
was, therefore, completely decomposed at any operational temperature
as leng as the residence time was greater than this value.

Figure 2 shows the feed streams to the reactor represented
by the circles on the left, and the product streams leaving the
reactor by the circles on the right. The squares represent theoretical

intermediates in the retorting operation with the Hi'S representing
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heats of reactions needed to form or decompose them. The sensible

heats of the products and reactants are represented by the Hx's.
The sum of the terms Ha and Hl’ determined experimentally by

Sohns (6) for temperatures to 1100 O can be expressed in Btu/1b

by the following equation derived from Shaw's work (7).

(Ha + Hl) = 0.174 (Tf - Ti)

2

Sioth ()

+ (0.035 + 0.00081 G) 1077 (T
The terms Ti and Tf are the initial and final temperatures, respec-
tively, of the shale in °R. G 1s_the modified Fischer assay of
the shale in gal per ton of raw shale. A Fischer assay was not
performed on the shale, but 20 gal per ton was estimated from carbon
analysis of the shale and weight loss during retorting.

Although Sohns stated his data included the heat of decom-
position of the mineral carbonates, the carbonate decomposition
at temperatures below 1100 °F is negligible (4) but must be taken
into acccunt in addition to Eq. 3 for higher temperatures. The
carbonate decomposition was therefore determined from the first-
order kinetics. The rate constants for the carbonate decomposition
are a function of gas-phase composition as well as temperature. The
data for decomposition in a nitrogen atmosphere were chosen because
the amount of carbon dioxide is small and because there were no data

available for carbon dioxide-nitrogen mixtures. The amount of

carbonate decomposition was determined from the kinetic data; from
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this the carbon dioxide liberated was determined using the analysis
in Table 1. The total carbonate composition, experimentally de-
termined, agreed with the total carbonate in Table 1.

Shaw's publication (7) also gave an expression for the
specific heat of the spent shale which gives the following relation-
ship in Btu/1b for HC:
H = 0.174 (Tf - Ti)

+ 0.026 X 107 (12 - T9) (4)

Analysis of the shale on a differential scanning calorimeter
(DSC) indicated the value obtained from Eq. 4 for HC was very'c1ose
to the experimental value (Appendix 2). There appear to be some
discrepancies in Sohns' work (6) in that he concluded that the heat
of retorting (Hl) was negligible and analysis of the DSC indicated a
significant value. Sohns later stated that there were possible
errors in his work and that the heat of rétorting was not negligible
(8). Work done by Tosco (The 0i1 Shale Corporation) (9) indicated
that Sohns' data were, however, in good agreement with work done on
the DSC, and, therefore, Eq. 3 is a good representation of (Ha + Hl).

With an approximate specific heat for the oil vapor (10)
and a 100-percent oil yield, the valuz of the term, Hd’ was
insignificant.

The terms H, and He were easily determined from enthalphy

b
tables (11).
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For the calculation of H2> the oil product was assumed to
have a carbon-to-hydrogen ratio equal to the ratio present in the
organic portion of the raw shale. Subtracting the inorganic carbon
content from the total carbon content (Appendix 2) gave an corganic
carbon content of 0.0947 1b per 1b shale. With the ratio obtained,
a heating value of 16,500 Btu per 1b was calculated from the en-
thalphies and heats of combustion of hydrogen and carbon (12).

The calculation assumed that the products formed were only carbon
dioxide and water. Gas chromatographic analysis of the vent gas
showed no carbon monoxide or light hydrocarbons indicating complete
combustion.

Not shown in the diagram is the heat loss from the reactor.
The heat transfer from the wall was difficult to calculate because
of the effects of the thermowells protruding from the insulation
and the irregularity of the surface. An average heat-transfer
coefficient at the wall was assumed to be 5 Btu per hr-sq ft- °F,
giving a heat loss of 3500 Btu per hour,

The heat balance around the reactor was used to calculate
the amount of burned organic product.,

Hé + Hé + Hé + Hi + Hé + Loss. - Hé - Hé = 0 (5)

H% is the value obtained when the heat of reaction, Hi’ is multi-
plied by the extent of reaction as determined from the kinetic
expression for each reaction. Hi is the value in Btu per hr obtained

by multipling the enthalphies of feed and product streams, Hx, by their
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respective flow rate as determined from the mass balance. Eq. 5
can be rearranged to give the pounds per hour of organic burned as

follows:

Organic Burned (1b/hr)

He + HL ¥ H1 +Hy - H - H{ + Loss (6)

—(Hz)

If the organic is assumed to be 100 percent recoverable as
oil, the following equation gives the maximum weight-percent oil
yield:

0i1 Yield = (Total Organic) - (Burned Qrganic)
Total Organic

This yield is hypothetical, for there is always a residual carbon
content left on the shale that is not converted to 0il products.

This yield can be converted easily to one of the empirical yields,
such as Fischer assay, for comparisons with other retorting operations
by knowing the residual carbon content.

As a check, it was necessary to correlate the data with the
mathematical model with one of the process variables. The most
desirable variable would have been o0il yield, but it was difficult to
get reliable, reproducible data. The large physical size of the
system masked most of the o1l yield because of deposition of oil film
in the piping and surge tank. The demister had a tendency to collect
oil and flush at sporadic intervals, giving large variations in

01l yield.
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It was necessary to select a variable that was accurately
measured and was a true indication of retort operation. The air
necessary for combustion met both of these requirements and could
be accurately calculated from the mathematical model and from the
stoichiometric oxygen needed for the complete combustion of the
organic products. The only additional assumptici that had to be
made was that no excess air was supplied to the reactor. This
assumption was Jjustified from the chromatographic analysis of the
vent gas on a molecular sieve column showing a very small percentage
of oxygen, which was probably due mostly to the air used for Teeding
the shale.

The spent shale did not provide a very conclusive check
because the spent-shale measurement was not very accurate owing to
loss in the surge tank; moreover, the relationship of spent shale to
raw shale was almost independent of operating cenditions in the range
of data.

The mass-and-energy-balance equations were solved by pro-
gramming on a digital computer (Appendix4). Because the solutions
involved trial-and-error calculations to obtain inlzt and outlet

gas compositions, an iteration technique was used.
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EQUIPMENT DESCRIPTION

REACTOR: The reactor 1is shown schematically in Figure 3.
The cylindrical section of the reactor is 6% in. in diameter and
6 in. long with a flange welded to the top. The conical section
of the retort is 6% in. in diameter at the top, tapering to a
. 2-in, diam. over a length of 18 in. It is welded to the cylin-
drical section at the top and has a 1%-in. pipe nipple 4 in.
long welded to its bottom. A top plate, which bolts onto the flange,
has attached to it the feeder and the outlet tube. The outiet
tube consists of a 3%~ by 1%-in. reducing coupling attached to
a 1%-in. pipe nipple welded through the center of the top plate.
The bottom of the reducing coupling extends 5 in. below the top
of the reactor. Material used in the reactor was 1/8-in. mild-
steel plate, except for the flange and the top plate which were
3/8~in. mild-steel plate. Quarter-inch pipe nipples were welded
into the reactor wall for use as thermocouple mounts. Six such
nipples were used: three were mounted perpendicular to the axis
of the reactor; the remaining three were mounted orthogonal to
these. With linear distances from the flange along the outside
of tha reactor wall, the nipples were located as follows: 12,

14}, and 18% in. and 9, 14, and 19 in. A 1-in. pipe was welded
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into the side of the reactor 10 in. from the top to facilitate

auxiliary solids withdrawal.

CYCLONE: The cyclone, 4 in. in diameter, was designed by

specifications given in Perry's Chemical Engineers' Handbook (15).

It was consiructed of 16-gauge mild-steel plate. The spent-shale
hopper is a 20-gal drum attached to the bottom of the cyclone by

‘a 4-in, pipe.

SURGE TANK: A modified 20-gal transformer drum serves as
a surge tank. The rubber seal for the 1id was replaced by an as-
bestos gasket for hiyh-temperature operation. Both gas entrance and
exit are axial. The drum is packed with 10 sq ft of %-in. steel
mesh. The drum also contains provisions for water-mist nozzles

and a water drain to a sealed 55-gal drum.

DEMISTER: The demister can best be described as a zero-
efficiency axial fan. This is a five-stage unit with axial entrance
and tangential exit. Each stage consists of a fan blade, a shim,

a flow diverter, and a stage separator. These components are described
in a previously published article (2).

These five stages are mounted in a 5-in.-1D steel tube. The
steel tube has a %-in. groove milled in its bottom extending between
the centers of the end stages. The assembly is mounted in high-speed

roller-bearings pressed into steel end-plates. The shaft is turned
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at 5600 rpm by a 3-hp 3-phase electric motor. An o0il cyclone, similar
in design to the spent-shale cyclone, is attached to the demister

outlet.

FURNACE: The furnace is a direct-fired propane unit. The air
enters tangentially with a 10-degree forward tilt; the propane enters
axially directly behind the air entrance. The furnace is constructed
from a 44-in.-long schedule-40 two-in. pipe. The outlet of the furnace
serves as the nozzle in the reactor by reducing the 2-in. pipe to
whatever nozzle diameter and length desired. The furnace was in-
sulated with % in. of asbestos tape and then covered with aluminum
foil to reduce radiation losses. The furnace was started with an

acetylene torch through a %-in. port in the furnace wall.

GAS COMPRESSOR: The gas compressor used was a Gast (Model
3040) operated at 800 rpm. The pump was driven by a 2-hp 3-phase
electric motor. The pump has a 20-cfm capacity at 0-psi differential
and 16 cfm at 10-psi differential. By changing the pulley sizes for
1060 rpm operation, the pump would have a 24-cfm capacity at O-psi
differential and 20 cfm at 10-psi differential. The pump body and

rotor were constructed from carbon'steeT, and the vanes were carbon.

FEEDER: The horizontal barrel of the feeder is a 1-in.-
square brass tube 4 in. long (Figure 4). A block inserted into the

rear of the barrel has a 1/8-in.-high orifice the width of the barrel
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and was used to provide uniform gas velocities across the barrel.

An intermediate brass hopper is fitted into the feeder barrel and
connected to an air-tight feed—stbrage hopper with a capacity of 106
1b of raw shale. The intermediate hopper is 4 in. square at the
connection to the storage hopper and tapers to a 0.95-in. square
neck. The neck extends into the barrel 5/8 in. leaving a 3/8-in.
clearance between the bottom of the neck and the bottom of the

barrel.

FEED CONTROL: Because the feed rate is coiitrolled by the
pulsation rate of the feeder, an accurate electronic controller
was designed and built for this purpose. The controller, fully
adjustable from 13 to 250 pulses per min, contains provisions for
two preset rates within these limits; it can also be controlled
externally by means of an electronic resistance controller to any

point within this range.
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INSTRUMENTATION AND CONTROL EQUIPMENT

For better process control and variable measurements, the
process was highly instrumented. A combination of pneumatic and
electronic controls and recorders were used to measure and control

the total gas flow, air flow, and reactor temperatures.

GAS FLOW: Total gas flow, supplied from the Gast compresscy
as a mixture of air and recycle gas, was measured by an orifice
plate with vena-contracta pipe taps. The pipe taps were connected
to a Barton pneumatic indicating differential pressure-tc-pressure
transmitter (Model 225-601). The output was connected to a Moore
(N/P Nullimatic) two-pen recorder and indicator, used in conjunction
with a Moore (Model 50 M) two-mode controller. The controller output
controlled the three-way bypass valve at the compressor, which
controlled the amount of air bypassed to the compressor inlet and
thereby controlled the total gas flow to the reactor. The flow was

recorded by the recorder on a 0-to-100 basis.

AIR FLOW: Air flow was measured by an orifice plate 1 ft
from the air inlet with vena-contracta pipe taps which were connected

to a Foxboro pneumatic differential pressure to pressure transmitter
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(Model 307887). The output was connected to the rtcorder used for
total gas flow and recorded on the remaining pen. This flow was

also recorded on a 0~to-100 basis.

TEMPERATURE MEASUREMENT: A11 the reactor temperatures were
measured by 1/8-in.-0D, 6-in.-in-length, ISA-K calibration miniature
thermocouples manufactured by the Thermo-Electric Company (Type No.
5K0120L). The thermocouples were connected to a Foxboro Dynalog
(Model 933A) six-point recorder. The recorder was modified for
ISA-K thermocouples and a 800- to 1800-°F range. Recycle- and
vent-gas temperatures were measured by %-in. industrial-type thermo-
couples in conjunction with a Thermo-Electric (Model 80237} protable

potentiometer.

REACTOR-TEMPERATURE CONTROL: Two independent systems were
available for controlling the reactor temperature. Both systems used
the miniature thermocouple previcusly described for temperature
measurement and a three-way mixing valve for controlling air rates.

The electrical system converted the thermocouple output to
a 4- to 20-milliamp signal by means of a Transmation, Inc. (Model
310-K) convertor. This signal was fed into a Yamatake-Honeywell
(Model NBCO3-X-4) three-mode controller. The controller output
was then transmitted to a Honeywell current to a pneumatic converter
vwhich controlled the mixing valve.

The pneumatic system converted the thermocouple output to a

prieumatic signal by means of a Moore (Model 80237) thermocouple-to-
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pneumatic converter and transducer. The output was then fed to a
Moore (Model 50i1) two-mode controller (Proportional plus reset)
connected to a Moore (N/P Nullimatic) indicating remote station.

The output of the controller was used to control the mixing valve.



EQUIPMENT OPERATION AND DESIGN CRITERIA

Most of the equipment was specifically designed to handle a
particular problem encountered in the operation of the unit. This
included the basic reactor design, feeder, cyclone, surge tank,

demister, and the control-and-measurement equipment.

REACTOR: The reactor consists of a conical transition section
and a cylindrical section attached to the top of the transition
section (Figure 3). In most of the previous works on spouted bed
(13) the conical section was small in length compared with the cylin-
drical section. This design was altered for use as a spouted-bed
0i1 shale retort in order to accommodate the highly exothermic
combustion reaction. The combustion caused sudden increases in
temperature and therefore would cause large velocity gradients
along the axis of a cylindrical retort. The main body of the retort
was made conical to increase the cross-sectional area of the retort
as the volume of the gas increases. Without this change in area,
the increase of gas velocities in fhe annulus fluidizes the upper
part of the bed, destroying the spout, or entrains a large amount

of shale, causing too rapid a carry-over rate. The use of the
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conical reactor was also beneficial in that the nozzle-diameter to
reactor-diameter ratio could be changed, without physically changing
the reactor, by raising or lowering the nozzle outlet inside the re-
actor. Although this ratio could be changed by using different-
size nozzles, the nozzle sizes were limited to approximately 0.5

in. Smaller sizes created pressure drops too large for stable
furnace operation; larger sizes decrease the gas velocity in the
nozzle to a point where poor spouting was obtained.

Contrary to the countercurrent flow pattern used in previous
applications of spouted beds (13), the reacted solids are removed
iith the gas stream, with separation occurring beyond the reactor,
giving co-current fiow. The carry over is enhanced by using a coni-
cal exit tube located in the top of the reactor. The solids flow
pattern in the reactor can be described as follows: as the spout
rises above the main level in the reactor, most of the solids fall
back into the annulus of the bed; however, some particles attain
enough kinetic energy to rise far enough above the bed to enter the
exit tube.

This method of removing solids from the reactor is selective
in the particles that are carried out. As expected, the less dense
and the smaller particles are preferentially removed (14). This
selectivity is beneficial to the operation of the retort because
the retorted particles are smaller and less dense than the unretorted
particles. The retorting operations that produce tﬁese changes are:

1) the solids become less dense from the loss of organic matter and
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carbonate decomposition; 2) the shale becomes softer as it is
retorted and undergoes attrition to produce fine particles.
If the feed rate exceeds the carry over, the side arm can

be used as a solids overflow into a sealed hopper.

FEEDER: Because this is a steady-state process, shale must
be fed into the reactor at a constant rate. The conventional types
of solids feeders were unacceptable for use with the unit because
of difficulties in scale-down. A small pulse feeder, developed
specifically for this application, is operated as follows: fresh
shale contained in the storage hopper is gravity fed into the inter-
mediate hopper of the feeder unit>as shown in Figure (4). The shale
flows into the square barrel of the feeder until it reaches the natural
angle of repose, A blast of air from the rear of the barrel forces
all of the shale that extends below the neck of the intermediate
hopper into the reactor. The blast of air is kept as short as pos-
sible to keep the air used to a minimum. Shale again flows into
the barrel, and the steps are repeated. The flow rate of shale can

be regulated by controlling the frequency of this cycle.

CYCLONE: The solids in the gas stream are removed by a
cyclone attached to the reactor outlet. This 4-in. cyclone is
capable of removing particTes greater than 10 microns in diameter (15),

which in most cases accounts for 90 percent of solids. The cyclone
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also serves as an air heat exchanger for cooling the gas stream.

SURGE TANK: The surge tank performs three main functions:
as a surge tank to reduce eny pressure surges in the system and smooth
out gas flow; as a heat exchanger in the same manner as does the
solids cyclone; as a means of removing most of the remaining solids
in the gas stream. Water-mist nozzles are placed in the tank for
enhancing heat exchanger and solids removal. The water spray serves
as a heat-transfer medium in that it is evaporated by the incoming
hot gas and then is condensed on the tank walls or other water
particles, thus many times increasing the effective heat transfer.
The water also wets the solid particles, causing them to settle

out more efficiently.

DEMISTER: The o0il mist in the gas streamn forms a very
stable, submicron mist upon condensation. The high-speed impingment
effect of the demister coagulates the mist particles on the demister
stages, and the oil drops are then thrown against the demister wall
forming a liquid seal between the demister stages. The oil flows
along the walls and is pumped through the stages to the 0il cyclone
at the demister outlet. The 0il is then collected in a small reser-

voir at the bottom of the cyclone,

GAS FLOW: The suction side of the gas compressor is connected
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to the common port of the three-way mixing valve (see temperature
control) and to another three-way valve used to control flow rate.
The compressor outlet is ccnnected to the common port of the three-
way fTlow-control valve with the third port of this valve going to
the reactor via the furnace. This construction enables the flow to
be controlled by regulating the bypass rather than throttling the
suction or discharge side of the valve. This provides smoother
flow control and keeps a constant load on the compressor. The total
gas flow is measured by an orifice plate between the two three-way
valves. This location was chosen over mcasurement on the discharge
side because the suction pressure remained relatively constant wheve
the discharge pressure was affected by all the pressure dropns in

the system. Vena-contracta pipe taps are used to give maximum-
measure pressure drop with the minimum unrecoverable pressure 10sSs.
Although a single-mode controller would have been sufficient for gas-

flow control, a two-mode controller was used.

TEMPERATURE CONTROL: The temperature is controlled by the
amount of oxygen put into the reactor, thereby 1imiting the amount
of burning of the organic products from the retorting operatioﬁ.
The gas stream from the oil cyclone, being essentially inert, is
mixed with fresh air thus adjusting the amount of air fed into the
reactor. The three-way mixing valve is controlled to give the correct

recycle-to-air ratio for correct temperature control, Both locations
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one and two (see Figure 3) was used for temperature control. Location
two provided the closer control; location one provided a smoother
control because of the thermal capacitance and damping of the outlet.
Miniature thermocouples were used in the reactor for their fast
response to temperature changes and because they gave smaller
disturbances to solids and air flow in the reactor. Although the two
independent control systems were installed, the electronic system

was used exclusively after its installation. The pneumatic system
was used as a continuous monitor because the six-point recorder had

a 40-sec cycle time. The three-mode electronic controller was

used in preference to the two-mode pneumatic because of the avail-
ability of the rate mode and a larger proportional band. The rate
mode was very useful to counteract the dead time lag of the system.
The two systems can be used in conjunction with each other for
cascade control. This use can be accomplished by converting the
pneumatic output to a current signal and using it as a set-point

input to the electronic controller.
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EXPERIMENTAL PROCEDURE

The retort must be operated at temperatures above the
flammability 1imit of the organic product; therefore, the retort
must be preheated by the furnace to reach this temperature.

The preheat and start up of the reactor were performed as
follows: The control air and feed air were turned on, and the
electrical controls and recorders were plugged into electrical
outlets. The demister and compressor motors were then turnad on.
The gas flow into the furnace was allowed to stabilize before the
furnace was started. While the furnace was in operation, the
temperature controller was turned to manual control with zero cutput
so that no recycle could be returned to the furnace. The propane
- feed rate was adjusted to give maximum furnace temperature. lhen
the reactor reached about 1000 °F, the shale feeder was turned on
and adjusted to the desired output. Uhen the retort outlet tem-
perature reached 1200 F, the propane feed was slowly decreased
until the excess air started to ignite the oil; upon this ignition,
the temperature in the retort started to rise more rapidly. The
propane waé then shut of f and the temperature controller set to auto-

matic control at the desired set point.



Because the gas flows and reactor temperatures were auto-
matically controlled and recorded, fhe operation after startup was
greatly simplified. If it was necessary to use the overflow tube,
the valve opening the overflow had to be opened every one-half hour
and the weight of the removed shale determined. Samples of o0il were
collected, weighed, and labeled for further analysis. Samples of
the vent gas were taken for immediate chromatographic analysis.
Samples were taken in pairs because they were analyzed with two
columns and because the sample bottles contained only enough gas
for one analysis. A molecular sieve column was used to determine
carbon monoxide, methane, oxygen, and nitrogen content. A silica-
gel column was used to separate the larger hydrocarbons from each
other and from the oxygen-nitrogen mixture.

The shutdown procedure is the reverse of the startup pro-
cedure up to the point where the furnace is started. In addition,
the storage hopper is refilled to determine the amount of shale used
during the run. The spent-shale hopper is weighed in order to
determine the amount of spent shale and then emptied for use in the
next run.

Preventive maintenance also had to be performed on some of
the equipment. The surge tank had to be removed and cleaned after
every 6 hours of retorting. The line connecting the surge tank and
demister had to be cleaned after each run to insure no plugging
problems. —The compressor had to be washed with organic solvent to
remove the oil mist so as to prevent sticking of the carbon vanes

in the rotor. -

32
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DISCUSSION OF RESULTS

The good agreement of the calculated results with the ex-
perimental results indicates that the mathematical model accurately
described the system within the range of the data points. The
average error between the calculated percent-air and the experimental
percent-air was 2 percent, whereas the estimated error in measurement
of the percent air was 4 percent. The experimental error was due
mostly to estimating the average air flow from the strip-chart
reccrder,

The large errors in runs 2 and 12 were characterized by large
temperature gradients in the reactor and unstable temperature control.
This condition indicates that the solids were not circulating in
the reactor because of complete collapse of spout or loss of spout
shape (1).

" The reproducibility of the data can be seen between runs 11
and 16, Although the runs are not identical, the parameters are
close enough for comparison, as shown by the 1-percent difference
in calculated air rates. The differences in the experimental air
rates is 2 percent, well within experimental error,

The range of variables reported in the data is the Timits

in which the retort was operational. Runs attempted outside these
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limits were failures. Temperatures had to be kept below 1200 OF

so that the gas temperatures in the demister were below 300 °F,
preventing bearing failure. Temperatures below 950 O produced
unstable contrcl of the system with temperature cscillations below
the flammability 1imit of the organic, causing flame out. At retort
temperatures below 1150 °F, the maximum feed rate was 15 1b per hr;
higher rates caused the reactor to fill because the carry-over was
insufficient. At 1200 °F the gas velocities and a higher attrition
rate were sufficient to maintain a carry-over rate of approximately
20 1b per hr.

The calculated results in Tables 2 and 3 are for conditions
in run 6 with the parameter indicated being varied. Table 2 shows
the effect of preheating the gas stream to 1200 °F.  Without preheat
the oil yield was 32 percent, indicating a possible doubling of the
yield with increase in inlet gas temperature tc 1200 °F. Table 3
shows the effect of increasing the shale-feed rate. Even if a
rate increase to 32 1b per hr were possible, the o0il yield wouid
be only 58 percent. The main reason for the poor oil yields, even
with prenheat or increased feed rate, is the large heat loss compared
with the other heat requirements (approximately 20 percent). The
portién of the heat Toss would be substantially reduced in a larger
size unit, improving the oil yield.

Atmospheric distillation (Table 4) of samples of o0il products

indicates the lack of low boiling components, substantiating the
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TABLE 2 (Preheat effects-Run 6)

T-gas % 011 Yield *
65 °F 32
400 41
500 24
600 47
700 49
800 51
900 53
1000 56
1100 59
1200 62

TABLE 3 (Feed effects-Run 6)

Feed Rate % 011 Yield *

1b/hr
10 17
12 26
14 33
16 38
18 42
20 46
22 43
24 50
26 52
28 54
30 56
32 58

* Theoretical 011 Yield (see theory)
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assumption that the light components were burned in the retort.
The samples used were from runs 9 and 16, which are the extremes in
operating temperatures; both show similar properties. The water
was 20 percent; cracking of the o0il was started at the 50-percent
point.

Solids content of the oils varied between 25 and 45 percent,

indicating an inefficiency of solids removal.
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TABLE 4

Run 16 - Atmospheric distillation

Percent 0F
0 ———
10 202
20 202
30 360
40 490
50 5562

cracking started

Percent solids in initial sample-48.8 %

Run 9 - Atmospheric distillation

Percent Of
0 ——_—
10 200
20 204
30 340
40 475
50 515

cracking started

Percent solids in initial sample-45.2 %
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CONCLUSTONS AND RECOMMENDATIONS

The results obtained from the research on the operating

criterion of a spouted-bed o0il shale retort are as follows:

1.

The operati08a1 limits of the present retort are
950 to 1200 “F with shale rates of
10 to 20 1b per hr.

The heat required by the process is
supplied by the combustion of the
1ight hydrocarbons as they are pro-
duced from the raw shale.

The combustion in the retort is a
complete combustion to carben dioxide
with approximately stoichiometeric
quantities of oxygen.

The heat-and-mass balances using
data obtained from the literature
cited and experimental data gave a
good mathematical representation of
the process.

Flow rates could be substantially increased
to give a residence time of between 5 and 10
minutes, while still producing complete pyrolysis.

Under circumstances of high temperature
and an oxidizing atmosphere, the fine
particles of spent shale can be explosive.

38
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From the operation of the unit and analysis of the results
obtained, recommendations can be made in two areas--equipment de-
sign for the spouted-bed retort or similar type entrained particle
retorts and application of further study of the techniques used
in this thesis.

The following recommendations are made for further design
of the retort and support equipment:

1. The demister be designed with a manifold
for draining the oil from each stage.

2. The bearings in the demister be fitted
with smothering glands to increase bearing
life.

3. The connection between the mixing valve
and the reactor be kept as short as possible
to decrease dead time lag.

4. A more efficient solids removal system
be used in place of the single cyclone.

Further studies could be made in the following areas:

1. A study of reactor designs be made to
optimize the gas flow needed for spouting.

2. The possibility of preheating from spent
shale combustion be investigated to produce
anaerobic retorting at lower temperatures.

3. A more sopnisticated system be used to
test the theoretical model.
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Appendix 1 - Data

A typical set of recorder outputs is shown at the end of the
data (Row 10). The circular chart is from the Foxboro six-point
recorder; time indicated on the chart is three times real time due to
an 8-hr clock being used in place of a 24-hr clock. The strip chart
indicated the total gas flow (the straight line at 15) and the air
rate (the oscillating line). These values can be converted to flow
rates by use of orifice-calibration curves.

Units and nomenclature for data:

T - Temperature at reactor outlet (°F)

V. - Volume of reactor (1b)

Feed - Feed rate (1b/hr)

Sperit - Spent-shale rate (1b/hr)

Gas - Total gas flow into reactor (cu ft/min)

Air - Fresh air into reactor (cu ft/min)
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Appendix 2 - 0i1 Shale Analysis

Total carbon - 13.19 wt. percent

Total hydrogen - 1.31 wt. percent

Total ash - 72.02 wt. percent

Heat content based on raw-shale weight (30 to 500°C)
Spent shale - 191 Btu/1b (based on spent shale weight)
Spent shale - 168 Btu/1b (based on raw shale weight)
Raw-shale retorting - 46 Btu/1b (based on raw shale weight)

Weight loss - 12 percent
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AYDEIDIX 3

The following 1s a direct computar output for the data

in Appendis 1 vsing the digitel prozron listed in Apcendix 4,

RUN 16.00

Tegna 65,00 F

Terodids 60,00 F

D 'L()o 0 Ibs/flne

EEACTOR TR, 993000 F

AVG. RE3, T8 183.02 min.

CAS r{ 61\ o . -

OIL YIBLD-we $ SEENT SHALE CAIC AIR-%  EXP ATR-S  § ERAOR

27.55 9.27 32.09 31.00 3.0

RUN 15.00

Pumes 65.00 F

Pogolids 60.00 F

FEED 12,30 1“/1«

REACTOR TP, 118000 F

AVG. RES. TLIE Th.83 min.

GAS T.lLO cfm

OI%, YIELD-w% % SFENT SHALE CALC AIR-$ FXP ATR-% % ERRCR

22,80 10,97 ki,5h 52,00 1,10

RUIT 2h.00

T-{j”” 65.00 F

Toootids 60.C0 F

FLZ’D 13.20 1os/hr

FORAT *z D, A075.00 F

AVG. RES. TGE 33,10 min.

GAS 8 “,5. efu

GIT YIBLD-wt % SFENT SHALL CAIC ATR-% EXP AIR-% ¢ VRROR

32405 13,77 35420 35,00 .59
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PUH 32.00
Tepirs G500 T

Tusoidds 60,00 1

FGED 34,20 Jna/in

REAGHCR WIMP, 105000 F
AVG. EBS. T 163,15 wmin.
GAS T.00 cfa
OIL YiIELD-uh $ SFENT SHALE

Lo,09 12.57

RUN 11,00

T=gos 65,00 F

T.collids 60,00 F

FEED 10.C0 1bs/w

REACHCR TiPe 000,00 F
AVG. KIS, DT 205.98 riin,
CAS Toblih cfm
OIL YIGID-wt S SIENT

AL

25.67 8.92

RUW 10,00

Pogzo 65,00 F
Tw50lids €0.CO P
FiiD 9.50 1bs/flre
R2ACTCR ToiP, L020.C0 F
AVG. RES, TR 242,15 mine
GAS T.00 cfm
OI1, YIETDensl S

23.39

SEEWT SHALE
8.l

RUN 9.00
Pegon 65.C0 F
T.sollds 60,00 F
FEED 10.60 1bs/hr
FEACTOR THP. 1200,00 F
AVG, RUS, TRE 200,39 min.
GAS T.CO cfm
CiL YIFID«t %

8.h9

SFEIT SHALE

9.1:5

CALC AIR-S
%8.18

CALL AIR-S
%230

CAIC ATR-%

33.65

CALC AIR-S
L), 86

\ '
EXP AIR-%

32,00

EXP AYR-S

33.00

EXP AIR-%
31,00

EXP AXR-%

Lo.00

% ERROR

16.83

¢ ERROR

10.83
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EJiT 8,00

Pgog £5.00 F

T.collds 0,00 F

FEID 19.30 1ba/ur

REACTCR TP 1200.C0 1

AVG. RE5, T0E X78.97 min.

GAS To30 cim

CIT, YIBIDasrt SERIY SHALY

36,85 17.21

RUi 7.00
T.gna 65.C0 F
i»golic\z OO F
Fiiit —050 50 lb‘%/‘l&
KEAGICR 9P, 1C30:C0 F
AVG. RES. ..,,.P:L. 170.39 miiie
CGAS $.50 ¢
OTL YLDt % SEEID SHALR

Lk 89 12.0%

=N 6.C0
Tegas 65,00 F
T.colids 60.CO T
FEZD 14.C) Ibo /i
RE,A'zm TP, 110000 F
AVG, RES. T08 £95.7T2 min.
GAS 8.00 ofaa
OTL YIEID-wt % SEENT SHALE

2.17 12.18

RUN .00

Tugeg 65,00 F

T.golids 60,00 F
FiED 12,30 lbofov
RUACTCR G, A070.C0 F
VG, FES, TRE 2061.80 rin,
GAS T.60 ¢

L YTEID-trC G SERY

30.56 ‘ 10.97

SHALE

0-:3

CAIC ATR-%

5,05

CALC ATR-$h
43,78

CALC ATR-%
38.L3

CALC ATR-S

EXP ATR-5

k9,00

EXP ATR=%

L0, o

EXP AR~
38,00

EXP AIR-%
35.C0

46

% BRROR

9.3k

4 3
¢ ERROR

8.64

¢ ERRCR

1.1}
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RUN 2,00

T.ges 65.00 F

T.golids 60,00 F

FEED 15.20 1bs/he

REACTOR TifP. 1180.00 F

AVG. RES. TTE T5.68 min.

GAS 9.20 cfn

OIl. YIEID-wt % SEXNT SHALE

25.88 13.55

RUN 1.00
Tegas 65.00 F

T.golids 60.C0 F

FEED 21,00 1lbs/hr

REACTCR TRP. 1030.00 F

AVG, FBS. TR 186.20 min.

GAS 9.20 cfm

OTL YiITID-wt % SPENT SHALE

L5,94 18.73

CALC AIR-%
39.65

CALC AIR-%
39.21

47

EXP AIR-% % ERROR

k7,00 18.53

EXP ATR-% ¢ ERROR
LL, 00 12,21
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Appendix 5
Additional Equations And
Relationships for Theoretical Model

The following equations were obtained from data given in Himmelblau

(11).

For N, and 0, H = -3263 + 6.47 T + 3559 x 107'1°
€0, H=-3614 +5.80 T+ 3361 x ]O“§T2
H,0  H = -3826 + 7.63 T + 2154 x 107/7°

where: T (=) °R and H = enthalpy (=) Btu/1b mole

The following equations, for calculating rate constants for
the thermal decomposition of the mineral carbonates, were obtained
from Jukkola (4):

For CaCoO

3 Tog k = 9.06 -19986/T

(MgCa) CO3 log k = 1.90 - 21843/T

o

where: k (=) 1/min and T (=) "R
From Table 1:
initial concentration of CaCO3 = 0.17 1b/1b shale

(~MgCa)C03 = 0.28 1b/1b shale
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The following relationships are calculated on the ‘basis of 1 1b of
raw shale.

0.17 1b CaCO, = 0.02 1b carbon

3
0.28 1b (MgCa; CO

it

3 0.027 1b carbon

Total 0.0470 1b carbon

Analysis of raw shale gave: 0.1317 1b of total carbon & 0.0131 1b
of hydrogen

Organic carbon = 0.13.7 - 0.0470 = 0.0947 1b

Total organic content = 0.0947 + 0.0131 = 0.1078 1b

10.78 % organic content = 10 gal/ton Fischer assay

The following are on the basis of 1 1b organic.
0.0733 1b-moles carbon and 0.06 Tb-moles hydrogen

‘therefore:

C + O2 = CO2 and H2 + %0, = H,0

Formed: 0.0733 1b-moles CO2
0.0600 1b-moles H20

Used 0.1033 1b-moles O2

or
0.493 1b-moles air
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(1)

(2)

(3)

(4)

(5)

(6)
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